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Human papillomaviruses (HPVs) are small DNA tumor viruses identified by their 

characteristic ability to replicate as a nuclear plasmid in mitotically active basal keratinocytes. A 

key characteristic of the HPV life cycle is the establishment of a stable maintenance phase 

wherein the virus replicates at low copy number, which likely occurs in cells expressing little to 

no E1 and E2. It is thought that HPV16 replicates in a once-per-cell-cycle manner during this 

portion of its life cycle and presumably interacts with host chromosome replication and 

maintenance factors to facilitate this replication. The adaptive radiation of papillomaviruses in 

response to changing host factors was well demonstrated in this work with an examination of 

the evolution of the Papillomaviruses’ E2 proteins and cognate binding sites as the virus has 

adapted to infect new body tissues. Additionally, the yeast model of HPV replication we utilize in 

our laboratory showed a varying ability to replicate in S. cerevisiae, again demonstrating that 

the replication environment plays a significant role in the long-term success of papillomaviruses. 

To further investigate these cellular factors, we investigated the role telomeric 

maintenance factors may play in these processes. We have performed ChIP assays that have 

shown that components of the telomere maintenance complex (shelterin) can bind to at least 

four sites in the HPV genome, each of which contain nine-base telomere-repeat sequences 
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(TTAGGGTTA).  We have shown that mutating these sites has a detrimental effect on the virus’s 

ability to replicate under certain conditions. The shelterin complex interacts with a number of 

important chromosome replication and maintenance proteins with such diverse functions as 

DNA replication, chromosome segregation, and DNA repair, making it an ideal target for 

coercion by a DNA virus utilizing a stable low-copy replication strategy. Interaction between 

Telomer Repeat Binding Factor 2 (TRF2) and Epstein Barr Virus Nuclear Antigen 1 (EBNA1) 

protein (a structural and functional homologue of E2) is required for replication of plasmids 

containing the Epstein Barr Virus latent origin of replication. Kaposi’s Sarcoma Herpesvirus 

(KSHV) Latency Associated Nuclear Antigen (LANA) protein (another homologue of E2) also 

interacts with TRF2. Results from our Far-Western and co-immunoprecipitation assays show 

that E2 interacts with TRF2 and other shelterin components. In summary, these results suggest 

that TRF2, TRF1, Rap1, Pot1, and Tin2, plus certain DNA repair proteins, may regulate the 

maintenance phase of the HPV lifecycle. E2 appears to be capable of mediating these 

interactions.  
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Papillomaviruses 
 

Papillomaviruses (PV) are small (55 nm diameter) non-enveloped viruses of 

icosahedral capsid symmetry that house a single molecule of circular supercoiled double 

stranded DNA (339).  PVs have coevolved extensively with their mammalian hosts, such 

that there have been human papillomaviruses (HPVs) essentially since the evolutionary 

emergence of humans (31). This family of viruses infects body surface tissues such as 

the skin or mucosal surfaces, which include the mouth, airways, and anogenital tissues 

of vertebrate animals (75).  According to the International Committee on Taxonomy of 

Viruses, the family papillomaviridae has 16 assigned genera (alphapapillomavirus 

through pipapillomavirus) and one unassigned genus (81).  There are over 100 strains of 

HPV identified at present (141) as well as numerous papillomaviruses that infect 

mammals, birds, and reptiles.  Papillomavirus strains are further classified by differences 

in the major capsid protein sequence L1.  New papillomavirus types are recognized if the 

L1 gene has 10% difference in DNA sequence as compared to the closest known PV 

type, a 2-10% difference constitutes a subtype and < 2% difference defines a variant 

(82, 339). Alphapapillomaviruses are further classified into high and low risk categories 

by their potential to cause cervical cancer (57, 220, 313). 

Mucosal HPV types are the causative agents of cervical cancer as well as some 

vaginal, anal, and penile cancers (37, 57, 220), typically as a result of genomic 

integration and resultant overexpression of the viral E6 and E7 oncogenes(306).  This 

was initially described in 1982 with detection of HPV sequences in human tumors (128, 

131, 332). High risk HPV DNA is found in greater than 95% of cervical cancers, making 

it clear that this virus is the causative agent of this disease (221, 307). Of these, HPVs 

16 and 18 are the most common causes, with HPV16 being present in over 50%, and 
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HPV18 10-12% of cervical cancers worldwide (36). HPV18 has been found in certain 

geographic regions to be more prevalent than HPV16 (224). Additionally, emerging 

research has implicated HPVs in some head and neck, anogenital, upper respiratory, 

and even some non-melanoma skin cancers (68, 126, 152, 344).   

 

Life Cycle of Papillomaviruses 

 

The life cycle of papillomavirus is closely associated with the differentiation 

profile of host keratinocytes. During the course of epithelial cell differentiation, the virus 

shifts through three replication phases in response to keratinization: establishment, 

wherein early viral replication occurs; maintenance, where the viral genome is stably 

maintained episomally by replicating through a theta intermediate; and amplification, 

where viral replication shifts to a rolling-circle mode and the copy number increases in 

preparation for encapsidation (112). The virus typically enters the host through wounding 

of the external epidermis, wherein the virus travels to the mitotically active basal 

keratinocytes to establish infection. HPV binds to a number of sub-receptors before 

eventually adhering to the candidate receptor α6 integrin and enters through clathrin-

mediated endocytosis (39, 75, 104, 143, 203, 277). Upon nuclear entry, the viral DNA is 

transferred to the nucleus and promptly targeted to PML bodies, which enhances 

transcription and are important for successful viral replication (74).  

Upon establishing infection in the host, the virus shifts into the maintenance 

phase of the life cycle. Gene expression of most of the open reading frames besides the 

viral oncogenes E6 and E7 is repressed, and the virus is maintained at a copy number of 

less than 20 per cell (105). Studies have demonstrated that the viral replication proteins 

(E1 and E2) are required for establishment of viral infection, but may be dispensable 

during the maintenance phase (159, 245). During this phase, the virus replicates in a 
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once-per-cell-cycle fashion which is reliant on a number of host factors for stability (114). 

The virus can thus be maintained indefinitely in the basal layers of the epithelium.  

As the cells of the basal layer divide, one cell remains attached to the basal layer 

while the other migrates up through the squamous epithelia and begins to progress 

through the keratinization and differentiation processes, which drives the HPVs into the 

vegetative phase of their life-cycle. This phase is characterized by activation of the 

keratin dependant promoter activity, increased expression of the viral proliferative genes, 

and a shift from a once-per-mitosis bidirectional theta replication model of viral genome 

replication to a rolling-circle mechanism along with an increase in expression of the L1 

and L2 capsid genes (72, 114).  

 

The HPV Genome 

 

HPV has a small 8kb genome that consists of a long control region (LCR), early 

gene region and a late gene region.  The LCR is ~850 bp long and comprises 10% of 

the viral genome.  The LCR contains the origin of replication (ori) and multiple 

transcription binding sites, thus controlling the expression of viral genes (141, 339).  The 

early gene region comprises 50% of the viral genome and encodes 6 open reading 

frames (ORFs).  The expression of genes in this and the late region is regulated by 

alternative splicing due to the compact genome of the virus.  The late gene region is the 

last 40% of the viral genome and is downstream of the early region (339).  Early genes 

are expressed in undifferentiated or newly differentiated keratinocytes and late region 

genes are expressed in keratinocytes undergoing terminal differentiation (202, 339).The 

early genes (E1, E2, E6 and E7) are primarily responsible for replication, genome 

maintenance, and the promotion of cell growth.   



www.manaraa.com

 
 

The viral E5 protein plays an important role in stimulating cellular proliferation. 

The protein activates ligand independent activation of the growth factor receptor, down-

regulates Major Histocompatibility Complex I (MHCI), and deregulates the Golgi body 

(11, 94, 334). E6 and E7 are bona fide oncogenes (192, 261). E7 binds to and 

deactivates the Retinoblastoma (RB) cell-cycle regulation protein as well as other 

members of the RB family of proteins in order to release E2F and progress the cell 

cycle. E6 binds to and, with the action of an E3-Ubiquitin Ligase E6 Associated Protein 

(E6AP), degrades p53 to down-regulate apoptosis. These genes combine to force the 

cell into an S/G2-like state to promote cell-cycle progression, down-regulate terminal 

differentiation processes, and promote viral genome replication.  

The E4 protein is usually expressed as a spliced mRNA as part of the E1 

transcript and is typically expressed in highly-differentiated cells. Its function is to sustain 

the S-phase like state induced by other viral factors. E4 weakens virus laden cornified 

envelopes and keratin filaments and alters the host cytoskeletal structure as a means of 

promoting viral egress (44, 73, 98). 

The L1 and L2 ORFs encode the major and minor capsid proteins, and are 

expressed in the late-stages of the viral lifecycle (62, 243). L1 is the major capsid protein 

and spontaneously organizes itself into pentameric structures that make up the majority 

of the viral icosahedral capsid (109, 161, 341). L2 is the minor capsid protein and plays a 

role in protein packaging, transporting DNA to the nucleus after viral entry, and 

recruitment of E2 to viral replication foci (74, 76, 335). 

 

E2 

The E2 protein serves multiple functions, with its primary role being that of a 

transcriptional regulator. It is a 350 to 500 amino acid protein expressed from a spliced 

mRNA transcribed from different promoters. E2 also negatively regulates the expression 
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of the E6 and E7 oncoproteins(184).  E2 polypeptides contain three probable domains: a 

DNA binding domain (DBD) located at the C-terminus, an N-terminus transactivation 

domain, and an internal “hinge” domain. Both the C-terminal and N-terminal domains are 

relatively well conserved within the PVs (254). E2 binds as a dimer to DNA-binding sites 

through action mediated by the DBD (202). The E2 DBD forms a dimeric β-barrel, with 

each strand contributing a half-barrel. The dimer interface has a hydrophobic core and 

uses extensive hydrogen bonding between subunits to maintain tight binding. This β-

barrel core contains elaborately packed side chains that contribute to the stability of the 

dimer. There is a poorly conserved loop connecting β-strands 2 and 3. This loop varies 

from 6-10 residues. The tertiary structure of characterized E2 DBDs is similar, but there 

appears to be variation in the orientations of the two subunits (141).  

The transcriptional repression activity occurs as a result of E2 binding sites 

overlapping TATA boxes or Sp1 sites and requires a functional transactivation domain 

(30, 298). Conversely, E2 has transcriptional activation functions by inserting E2 binding 

sites (E2BSs) upstream of thymidine kinase promoters in a Chloramphenicol Acetyl 

Transferase (CAT) assay (52). Much of E2s ability to affect transcription comes from its 

interaction with the Bromodomain 4 protein (Brd4), an essential cellular protein that 

binds to acetylated lysines of Histone H3 and H4 (91) and stimulates RNA polymerase II 

transcription (330, 331). E2 redistributes Brd4 into punctate dots scattered along the 

chromosome (208) and increases Brd4’s affinity for binding to interphase chromatin 

(208). Presumably, this is an effect of E2 utilizing Brd4 as a transcription factor (206). 

There is evidence to suggest that the activation domain mediated oligomerization could 

influence interaction between E2 molecules bound at distant E2-binding sites forming 

DNA loops and other DNA structures (8, 141).  

Expression levels of E2 in infected cells are a matter of some debate. High levels 

of E2 expression in mammalian cells leads to activation of caspase-8 dependant 
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apoptosis (90, 118). While this seems counterintuitive, it is believed this interaction is 

related to an observed role played by caspase-8 in differentiation of keratinocytes (118). 

As such, only one cell line has been found which stably expressed E2 with episomal 

HPV DNA (282) and it has never been observed in raft culture experiments utilizing 

HPV16 and 18 (28). Observations of HPV infected cervical biopsies have determined 

that E2 expression is primarily isolated to the more differentiated layers of low-grade 

Cervical Intraepithelial Neoplasia (CIN) lesions but not in proliferating cells (28). High 

levels of E2 expression thus appears to be restricted to differentiated cells in the 

epithelium with high levels of keratin expression, but not in rapidly dividing cells (320).   

One of E2’s most important functions is to tether the viral genome to replicating 

chromosomes during mitosis to ensure proper segregation of viral plasmids to daughter 

cells (201). Initially, this was theorized to be the result of an interaction with the 

Bromodomain4 protein (BRD4), which is required for plasmid segregation and 

transcriptional control in Bovine Papillomavirus 1. However, further studies 

demonstrated that, while all papillomavirus E2 proteins studied thus far utilize Brd4 for 

transcriptional purposes, it is dispensable for the plasmid maintenance in HPVs (206). 

The maintenance function of E2 thus remains somewhat cryptic. Although binding of E2 

to mitotic chromosomes is consistently observed, the binding location is not conserved 

amongst PV types (231). Some studies have demonstrated that the beta-papillomavirus 

HPV8 E2 protein has a binding preference for the rDNA gene region of acrocentric 

chromosomes (231, 246) which contains a number of binding sites for E2 and, due to its 

unique chromatin structure, can allow E2 to remain transcriptionally active (67, 119, 

164). By contrast, the BPV1 E2 protein is observed during this phase as discreet 

speckles associated with the papillomavirus genome scattered along the chromosome 

(274). Alpha-papillomaviruses had a similar binding localization to HPV8, but while other 

PVs are observed associated with the chromosome throughout mitosis, alpha-
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papillomavirus genomes are only observed attached during prophase and telophase (97, 

120, 231).  This association is observed in other DNA viruses with long-term replication 

strategies, as Epstein Barr Virus (EBV) Nuclear Antigen 1 (EBNA1) protein binds to a 

pre-mRNA processing protein and localizes to the nucleolus during interphase ((50, 269) 

and Kaposi’s Sarcoma Herpesvirus (KSHV) Latency Associated Nuclear Antigen (LANA) 

binds to pericentromeric and telomeric regions of DNA similarly to E2 (231).  

The consensus sequence 5’-ACCgNNNNcGGT-3’ is recognized by E2, with the 

position 4 and 9 residues allowing some variability. A number of studies have been 

performed to examine the binding of E2 protein to its cognate binding site (33, 83, 111, 

141, 144, 249, 257, 293). The 4-nucleotide spacer sequence varies by HPV type, and 

has been identified as being critical for determining E2 binding affinity through indirect 

readout as well as playing a potential role in gene regulation, despite having no 

predicted nucleotide-amino acid contacts from crystal structure (33, 83, 141, 144, 328). 

E2 binds DNA as a homodimer with each monomer supplying an alpha helix to contact 

two successive major grooves of the target site (83, 141) 

Four typical E2 binding sites are conserved in the upstream regulatory region 

(URR) of most papillomaviruses, numbered according to their distance from the early 

promoter (202). Each site is differentially regulated and demonstrates variable binding 

affinity for the E2 protein, resulting in varying replication and transcriptional effects 

during the viral life cycle (63, 191) presumably as a result of differences in E2 binding 

affinity (141) due to sequence variation as well as methylation of the E2 binding site 

(257, 293). These binding sites are typically well conserved across all papillomaviruses. 

However, in some cases variation in the number and location of some E2 binding sites 

does exist, including a predicted fifth binding site within the URR of betapapillomaviruses 

(103) and some alphapapillomaviruses (257) as well as up to 17 sequences with ability 

to bind E2 from the URR of bovine papillomavirus 1  (22, 71, 170, 249, 273).   
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HPV Replication 

 

Papillomavirus DNA replication requires primarily cellular factors, recruiting 

polymerase alpha along with other elements of the cellular replication machinery (240).  

The accepted model relies on the viral proteins E1 and E2 for genomic amplification (95, 

250, 301). The viral origin of replication contains a minimum of one E1 and E2 protein 

binding site (301). The E1 protein functions as an ATP dependent helicase and recruits 

DNA polymerase alpha to act as an elongation factor (117, 217, 242). It is regulated by 

extensive post-translational modification (172). E1 unwinds the viral genome through its 

ATP-dependant helicase activity.  

E1 is loaded onto the origin by the E2 protein, which is localized to the HPV 

replication foci by the L2 protein (76). The two early proteins bind as dimers 

cooperatively through an interaction between the N-terminus of E2 and the helicase 

domain of E1 (259, 265). After loading E1, E2 dissociates from the viral genome while 

E1 forms into a hexameric helicase ring, similar to that formed by the minichromosome 

maintenance proteins (258, 262, 264, 296). At this point, E1 recruits Replication Protein 

A (RPA), topoisomerase I, polymerase α primase, Proliferating Cell Nuclear Antigen 

(PCNA), Replication factor C, and DNA Polymerase δ. (58, 61, 137, 166, 185, 197, 210, 

219). E2 recruits a number of factors important for viral replication including 

Transcription Factor II β, Transcription Factor IIδ, Activation Domain Modulation Factor-1 

(AMF-1), Breast Cancer Associated protein 1 (BRCA1), Poly [ADP Ribose] Polymerase 

1 (PARP1), Transcription initiation factor TFIID subunit 1 (TAF1), Topoisomerase I 

(TopoI), DNA topoisomerase 2-binding protein 1 (TopBPI), and chromatin remodeling 

P300/CBP-associated factor (p/CAF), transcriptional co-activators p300/CBP, Brahma 

(BRM), hSNF5 and Nucleosome Assembly Protein (NAP-1), as well as Bromodomain-
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Containing Protein 4 (BRD4) (reviewed in (27)). Once replication is completed, it is 

suggested that an interaction between E2 and ChLR1, a DNA helicase involved in sister 

chromatid cohesion, plays an important role in ensuring post-replication segregation of 

viral genomes (239).  

Previous research has indicated that papillomavirus genomes can be replicated 

and maintained stably in the absence of E1 and E2 (7, 158, 336).  Silencing mutations of 

the individual HPV open reading frames have shown that none of the individual ORFs 

are strictly required for successful genomic replication and maintenance in tissue culture 

(7).  Since it has been demonstrated that replication of papillomavirus genomes occurs 

in the absence of viral proteins in yeast as well, it is apparent that conserved cellular 

factors must play a role in replacing E1 function.  For instance, the E1 protein forms 

hexamers which function in a similar manner to cellular helicases such as Werner’s 

(WRN) and Bloom’s (BLM) Syndrome Helicases, members of the RecQ family, and the 

minichromosome maintenance proteins (MCM) (102, 117, 216, 242).  It is conceivable, 

then, that host factors could be adapted to perform similar replication functions in place 

of viral proteins like E1, suggesting that an E1-independent mode of replication could be 

relevant during the maintenance phase of the HPV lifecycle. 

 

HPVs Replication in Yeast 

 

Having initially established that HPV genomes can replicate in Saccaromyces 

cerevisiae(7, 158), the HPV/yeast system has proven easy to manipulate to study many 

aspects of the HPV lifecycle, including transcription, replication and production of virus-

like-particles (VLPs).  HPVs 6b, 11, 16, 18, and 31 can replicate in short-term assays 

when transformed into competent yeast (5-7, 158, 336, 337).  Furthermore, the Frazier 

laboratory has reported that BPV1 replicates robustly in yeast (336, 337).  Recently the 
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Khan laboratory has reported that HPV1 can replicate in yeast, but requires a 

centromere to be maintained stably (51). Kim et. al. mapped both ARS and CEN 

replication functions in S. cerevisiae to the late region of HPV16 (158). The great degree 

of homology between the genomic replication mechanisms of yeast and higher 

organisms creates the possibility that similar mechanisms could be involved in 

papillomavirus replication in higher eukaryotes, especially during the maintenance phase 

when replication factor transcription is minimal.  

 

Structure of Telomeres and their Regulation: 

Telomeric repeats, telomerase and T and D loops 

 

Telomeres are essential structures that cap and protect ends of linear 

chromosomes, hiding them from DNA damage sensing mechanisms and repair 

machinery (77) and solving the problem of sequence loss from the ends of 

chromosomes as a result of DNA replication through regulation of the telomerase 

enzyme (reviewed in (60)). The last 50-500 bases of the telomere consist of a single 

stranded G-rich overhang (77) sequestered into a T-loop lariat structure (79, 135), the 

end of which is inserted into a complementary C-rich region, resulting in displacement of 

the G to form a displacement or D-loop. 

These protective functions are mediated by telomere associated protein activities 

as well as formation of T-loops by these proteins (78, 79). Telomeric DNA consists of 

tandem repeats of (TTAGGG)n synthesized by telomerase (60) an enzyme consisting of 

the telomerase reverse transcriptase and terc, the RNA template from which the repeats 

are synthesized (60). Telomerase is a reverse transcriptase similar to that utilized by 

retrotransposons, which are their potential evolutionary ancestor (101). Telomerase is 

conserved between vertebrates, invertebrates, plants, fungi and many unicellular 
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organisms (reviewed in (186). Dipterans, including Drosophila melanogaster, do not use 

telomerase to maintain chromosome ends, relying instead on retrotransposition (32). 

Certain immortalized human cell lines utilize alternate lengthening of telomeres (ALT) to 

replicate telomeres in a telomerase independent manner (187) utilizing telomere-

telomere recombination and t-loop-mediated extension. 

 

Telomere-related factors and their functions 

 

The telomere is maintained through the action of a number of proteins combined 

together into a protein complex called shelterin. The shelterin/telosome complex 

functions primarily by bringing the three telomeric DNA binding factors (TRF1, TRF2 and 

Pot1) into the same large complex (78, 181, 237) along with Ras related protein 1 

(RAP1) (173), and TRF1-TRF1 Interacting Protein (TIN2) (77). Studies suggest that the 

shelterin complex binds preferentially to ds/ss-DNA junctions with a Pot1 binding site 

and at least one Myb-domain (the DNA binding site for TRF proteins) (54). The shelterin 

complex binds along the length of the telomere repeats and, as the telomere length 

increases, negatively regulates the activation of the telomerase holoenzyme and, in 

doing so, regulates the length of telomeres (106) (266). Thus, the shelterin complex 

functions as a sort of telomerase-length thermostat, down-regulating the activity of the 

telomerase enzyme as the telomere increases in length, allowing more shelterin to bind.  

TRF1 and 2 (telomeric repeat factors 1 and 2) bind duplex telomeric DNA (43), 

and are almost entirely associated with cellular chromatin (288). TRF1 and 2 share a 

common architecture defined by two conserved regions: a TRFH domain that mediates 

homodimerization and a carboxy-terminal DNA binding domain of the SANT/Myb family 

(43). TRF1 forms long filaments of protein bound along the length of the telomere and 

negatively regulate telomerase activity (133). TRF2 promotes development of T-loop 
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structures (134, 283), potentially as a result of positive supercoiling (4).  TRF2 also 

serves to stabilize T-loops (116) through their N-terminal domain’s ability to bind ss-DNA 

in a number of secondary structures. TRF2 also recruits the MRE11 complex, which 

functions for recombination and repair, as well as WRN and Blm helicases, more DNA 

repair factors (236), that could facilitate the unwinding step that is involved in t-loop 

formation. Loss of TRF2 leads to rapid reduction in telomere length, aberrant telomere 

structural formations, and activation of p53 mediated apoptosis in cells due to the 

proteins ability to interact with ATM (302, 309). A conditionally activated siRNA against 

TRF1 and 2 in mouse cells resulted in activation of the non-homologous end joining 

(NHEJ) system to aberrantly link the chromosomes of cells together into long chains 

(266).  

Pot1 (protection of telomere 1) is the human homologue of the G-overhang DNA 

binding proteins present at the end of all telomeres, and is a structural homologue of 

TEBP from various protist species and CDC13 from fusion yeasts. These proteins 

feature a characteristic oligonucleotide-oligosaccharide binding fold within their DNA 

binding surfaces that provides high sequence specificity for a minimum of two single-

stranded telomeric DNA repeats typically found within 3’-overhang and in D loops (23, 

171, 183, 214, 294, 321). Pot1 is localized on the T-loop of the telomere through 

interphase and only dissociates when DNA replication is occurring, but can also be 

found bound along duplex regions of T2AG3 repeats away from the single-stranded 

loop, likely through an interaction with the TRF1/Tankyrase/Tin2 complex (310). The 

protein has a number of phenotypic effects on the telomeres, including being 

demonstrated to be both a positive and negative regulator of telomerase (9, 59, 183). 

Loss of Pot1 due to siRNA, deletion, or expression of a TRF2 dominant negative mutant 

to strip shelterin from the telomere leads to loss of telomere length, chromosomal 

abnormality, and eventual induction of senescence and apoptosis (24, 322). One 
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explanation of the dual functions with regards to telomerase may come from the 

protein’s association with TPP1, which heterodimerizes with Pot1 and regulates 

recruitment of Pot1 to telomerase (160, 180, 227) and acts synergistically to recruit 

telomerase (308, 319). S ceverisiae utilize Cdc13, a similar ssDNA binding protein, to 

protect telomeres against exonucleolytic attack and prevents activation of DNA-damage 

checkpoint by chromosome ends, in place of TRF2 (189) 

 Additionally, these proteins transition through a number of sub-complexes that do 

not contain TRF1 or TRF2/RAP1 (47, 48, 145, 181, 237, 288, 327). TRF2 exists in two 

separate pools of protein on the telomere, one with greater stability than the other (199).  

Isolated chromatin has been found to contain vast molar excesses of TRF2, TIN2, and 

RAP1 compared to other shelterin components, implying that they may form a separate 

complex (288). One of these potentially is a complex dubbed “T2” by Choi et. Al. in in 

vitro experiments containing TRF2, Pot1, TIN2, TPP1, and RAP1 (54) which seems to 

be responsible for binding to the ends of telomeres and managing the T and D loops. 

 

Replication Through Telomeres 

 

Replication of telomeric DNA during regular cellular mitosis presents a number of 

challenges for cells. DNA replication typically initiates from origins located in the sub-

telomeric region (311). Telomeric DNA replicates throughout S phase while subtelomeric 

DNA only replicates at the end of the phase, which suggests that telomeres may have 

their own separate origin of replication (151, 229, 290, 317). The first problem comes 

from typical cellular replication of the telomere, known as the end replication problem. All 

cells’ DNA-replication machinery utilizes short RNA primers to initiate DNA replication. In 

the case of the telomeres, removal of the final primer from the 3’ end of the linear 

chromosome leaves a short, unreplicated segment which cannot be filled in. Over time, 
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this would lead to gradually increasing loss of telomere sequence and eventually loss of 

coding DNA [reviewed in (132)]. The cell corrects for this by utilizing the telomerase 

holoenzyme for the leading strand, paired with synthesis of the lagging strand by small 

RNA primers utilizing polymerase primase (70, 338). In budding yeast, this occurs at the 

same time as G-strand synthesis and seems to regulate telomerase activity (93, 226, 

312), whereas in humans the two activities are separate (338) and lagging strand 

synthesis is controlled by activation of cyclin dependant kinase 1 (CDK1) (70). In 

budding yeast, it has been shown that DNA polymerase α primase is essential for 

telomerase extension of telomere ends (93) to compensate for the G-overhang. Similar 

results have been observed in fission yeast (69) and mouse cells (222). The last 

segment of the telomere thus consists of one of these primers, which is then removed by 

nucleases, leaving a short single stranded G-overhang, which then form the T-loop. 

The second problem has to do with the actual progress of replication forks 

through telomeres themselves. Progress of the replication loop must deal with a number 

of uniquely challenging secondary structures when processing through the telomeres, 

including G-quadruplexes, heterochromatinized DNA, and the t-loop itself. G-

quadruplexes are stable intra-molecular structures which occur through the formation of 

Hoogsteen base-pairs between four guanine residues (142). Organisms utilize the Blm 

and Wrn helicases to further the replication fork migration, as well as replication protein 

A (RPA) and Pot1 (256, 333). Most of the telomere consists of regions of the genome 

which are bound by nucleosome arrays(297) with histones that have been specifically 

modified to consist of highly repressed structures known as heterochromatin (121, 129), 

which negatively regulates telomere length (29). The mechanisms by which this is 

regulated are not well understood, but are predicted to involve complex levels of 

epigenetic control. Telomeric DNA has a tendency to cause replication forks to slip 

backwards and generate complicated replication structures like Holliday Junctions or 
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chickenfoot structures which need to be resolved for successful DNA replication (115). 

Additionally, the t-loop itself is difficult for cells to resolve and is a site at which 

supercoiling stress accumulates during the course of DNA replication. Unwinding of this 

structure is essential to allow efficient DNA replication. TRF1 and fission yeast 

homologue protein Taz1 promotes efficient replication of telomeric DNA by preventing 

fork stalling (211, 268), but unfortunately it is not sufficient to prevent all potential 

replication difficulties. All of these potential replication fork obstacles can result in 

accumulation of stalled replication forks within the telomere, ultimately leading to 

activation of ATM or ATR mediated DNA damage responses (194, 304), which explains 

an observed activation of DNA damage signals during replication of telomeric DNA 

(304).  

When a replication fork stalls during replication at other chromosomal sites, the 

stall is typically repaired by another replication fork coming from the opposite direction 

meeting up with the stalled fork, at which point the two strands are joined through 

recombination. This, of course, is not an option for telomeric sites where replication is 

unidirectional. Stalls in telomere replication forks initiate a DNA damage response that 

recruits the MRE11/Rad50/NBS1 complex to the site, because it is detected as a double 

strand break (304). This complex then activates the Ataxia Telangiectasia Mutant (ATM) 

and Ataxia Telangiectasia and Rad50 Related (ATR) damage responses. RPA protein 

binds along the length of any exposed single stranded DNA. MRN, the 911 complex, 

FEN1, DNA polymerase β, and Rad17 then cooperate to restart the replication fork 

(reviewed in (304).) Replication through telomeres is thus observed to typically be a two 

step process as observed by rate of BrdU incroporation: 1) Replication progresses into 

the telomeric region and stalls and 2) replication fork reinitiates and progresses to the 

end (304).  
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RecQ helicases are a conserved family in yeasts and mammalian cells that are 

essential for maintaining genome integrity. These are critical for telomere replication and 

resolution of telomeric recombination (10, 14, 66). Patients with defective Wrn helicase 

specifically lose telomeres replicated by lagging strand synthesis, presumably due to 

Wrn’s ability to unwind G-quadruplexes in a POT1 dependent manner (174, 234). Blm 

helicase similarly functions to resolve these quadruplexes (234), and mutations to this 

gene increase levels of sister-chromatid exchange, genomic instability, fragile telomeres, 

and elevated levels of chromosomal aberrations (122, 123, 268). TRF2 seems to play a 

role in stimulating Wrn/Blm activity (234). A heterotrimeric complex of proteins known as 

RPA functions to bind to ssDNA during DNA replication and repair processes (316, 343). 

Loss of RPA (or its homologues) in budding and fission leads to gradual shortening of 

the telomeres (233, 276). In vitro models have shown that RPA is capable of stimulating 

WRN’s ability to resolve G quadruplexes, modulates telomerase activity (235, 256, 280), 

and coats ssDNA during the passage of the replication fork. However, Pot1 has a higher 

affinity for the G-rich regions of the telomere single-strand overhang (10). An exciting 

field of research is emerging to study a newly discovered RPA-like heterotrimeric 

complex, the CST complex. This appears to be a key player in regulating C-strand 

synthesis (215, 286). In both yeast and human cells, the CST binds to single-stranded 

DNA and plays a role in mediating C-strand fill-in, regulates Telomerase (both positively 

and negatively), and prevents excessive G-strand elongation (49, 215).  

The role of TRF2 in aiding telomeric DNA replication is essentially through acting 

as a protein hub (124, 157) and recruiting important replication and DNA maintenance 

factors to critical sites. For instance, TRF2 recruits proteins like Apollo and Top2α to 

locations of supercoiling strain to release tension during replication (4, 326). Additionally, 

TRF2 localizes to sites of recombination and T-loop formation, where it then utilizes 

factors like BLM and WRN helicase along with the MRE11/Rad50/NBS1 to resolve the 
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structures efficiently (4). Additionally, TRF2 localizes to the sites of the pre-replication 

complex (pre-RC), where it interacts with the origin recognition complex (ORC) and 

facilitates initiation of telomere replication (86, 292). 

 

Telomere maintenance and Segregation 

 

 Telomeres play a vital role in ensuring the proper segregation and maintenance 

of chromosomes during cell division, specifically meiosis. Significant research has been 

conducted investigating telomere maintenance and meiosis of yeast. At the onset of 

meiotic prophase I, telomeres attach to the nuclear envelope (NE) and undergo NE-

bound motility, attaching to the nucleoplasmic face of the inner nuclear membrane (46). 

It has been proposed that the telomeres  potentially connect to filament bundles that 

project between the telomere attachment plate through the NE to the cytoplasm (178) 

The telomeres then move along the inner nuclear membrane to the cytoplasmic 

microtubule organizing center (MTOC) in animals and fungi (342) or the cell cortex in 

plants (65) 

Disruption of telomere maintenance proteins in eukaryotic cells lead to a number 

of dysfunctions. Saccaromyces cerevisiae meiosis relies on scRap1. Strains with altered 

telomere sequence or scRap1-binding sites experience defective meiosis (2, 193) Terc -

/- mice have reduced telomeric repeat tracks and defective axial element (AE) formation 

and synapsis (182). Mammalian ring chromosomes, which don’t contain telomeres, don’t 

localize to the nuclear periphery of spermatocytes (305).  

Information on the proteins required for mediating the attachment to the nuclear 

envelope is somewhat scarce, but the process seems to rely on the SUN domain 

proteins (Sad1p, UNC-84 proteins that are important for positioning of the nucleus) which are 

present in most organisms. SUN domain proteins bridge the gap between the inner and 
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outer nuclear lamina, connecting the nuclear and cellular cytoskeletons and playing a 

role in organizing nuclear contents (300) SUN1 (96) and potentially SUN2, given that the 

two typically have associated protein functions in NE protein attachment and 

coordination (138). 

 Unfortunately, information on the role which telomeric proteins play during mitotic 

chromosomal segregation is incomplete outside of some cursory studies. While it is clear 

that telomeres play a role in ensuring the success of this process and regulating 

telomeric recombination during meiotic pairing, a hard mechanism has yet to be defined. 

TRF1 associated protein Tankyrase 1 (TANK1) is essential for separation of sister 

chromatids during mitosis (99). Male mice missing the A-type lamin isoform C2, an 

important protein linking the actin and microtubule skeleton to the nuclear envelope, fail 

to undergo fine meiotic telomere/NE attachment and clustering (3). Nuclear envelopes of 

frog oocytes contain a TRF2 homologue (247) that may provide a possible means by 

which they attach to the envelope during meiosis. Rap1 is dispensable for formation of 

the “bouquet” structure characteristic of chromosomal organization during cell division in 

mammalian cells (260) but is required for the same process in Schizosachromyces 

pombe (53, 154) 

 

Homologous Recombination Based DNA Repair 
 

Five distinct complexes exist to monitor for and repair DNA damage, of which the 

ATM and ATR system are best characterized. Within the ATM system, DNA damage is 

detected by the MRN complex, consisting of MRE11, Rad50, and NBS1. Once a break 

is identified, the complex activates ATM and recruits it to the damage site (167). ATM 

then phosphorylates a number of down-stream effectors to initiate the repair processes. 

Over 700 proteins are phosphorylated in response to Ionizing Radiation damage (198). 
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Double strand breaks in DNA, particularly those caused by the introduction of ionizing 

radiation, are repaired primarily by one of two mechanisms: the non-homologous end 

joining (NHEJ) system and Homologous Recombination Repair (HRR) (42, 64, 289). 

HRR is a primordial mechanism involving a complex series of events including: end 

resection, Rad51 filament formation, homologous sequence identification, heteroduplex 

formation, repair synthesis, and heteroduplex resolution [reviewed in (125)]. This repair 

mechanism can only function during S and G2 phase, when DNA has been replicated 

and the sister chromatid is available for recombination. Approximately 15% of ionizing-

radiation induced DSBs are repaired by HRR (153).  

Regulation of the HRR system is complex and redundant. The identification of a 

DSB in a chromosome is followed immediately by phosphorylation of ATM (17). This 

phosphorylation is required for recruitment of ATM to the site of the break and is 90% 

efficient, but is not required for successful repair (315). ATM is thus alternately described 

as either a director sensor of DSBs and mediator of repair or an indirect sensor that 

promotes cell survival and repair. ATM then functions to phosphorylate a number of 

downstream factors at the repair site to activate the repair processes including Chk2, 

BRCA1, and γH2AX(56, 139). ATM activation is also required for differentiation 

dependant amplification (218).  

The primary indicator of DNA damage in cells is the phosphorylated forms of γ-

phosphorylated Histone 2AX (γH2AX) (45, 108, 284). Another factor phosporylated by 

ATM is MDC1 (mediator of DNA-damage checkpoint 1), which recruits a number of HRR 

factors including 53BP1 and BRCA1 (113, 228). Another key factor is the NMD complex 

of proteins, consisting of MRE11, Rad50, and MRN. MRE11 is a single ssDNA 

endonuclease and possesses 3’-5’ endonculease activity (299). Rad50 is an ATPase 

(148). MRN contains a DNA end binding domain. Together, these proteins rapidly locate 
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sites of DNA damage independent of ATM activation and helps recruit factors to initiate 

the repair processes (212). Additionally, the MRN complex actually promotes recruitment 

of ATM to damage sites and increases its autophosphorylation (108, 167, 168). 

 

DNA Repair Systems Targeted To Telomeres 

 

The interplay between the telomere maintenance proteins and the cellular DNA 

repair systems is intricate and vital, since loss of these systems leads to rapid activation 

of NHEJ, telomere loss and/or end-to-end fusion of chromosomes. Formation of the T-

Loop at the telomeric end is an important part of this process, as it inhibits the activity of 

DNA liagase IV, the enzyme responsible for fusing telomeres (77). TRF2 is obviously 

vital for this, as it is responsible for forming the T and D-loop structures along with POT1. 

TRF2 is thus required for blocking recognition of telomeres as ds-DNA breaks.  

Interestingly, a number of DNA repair factors  localize to the telomeres through a 

direct interaction with TRF2 (278) and a body of evidence is available to demonstrate 

that the telomere maintenance systems in general and TRF2 in particular play an 

important positive role in DNA repair. Conditional deletion of TRF1 and 2 to remove the 

shelterin complex leads to derepression of 6 different repair pathways: ATM, ATR, C-

NHEJ, HDR, alt-NHEJ, and 5’ resection (267). The basic domain of TRF2 allows the 

protein to localize to double stranded breaks induced by UV light (40) irrespective of the 

presence of TTAGGG repeats, as well as Holliday junctions (116). This makes some 

sense, given that TRF2 is important for initiating a telomerase independent method of 

telomere maintenance known as ALT which relies heavily on recombination based 

methods to regulate telomere length (281). This ALT system relies on TRF2 mediated 

formation of ALT Mediated PML Bodies (APBs) that contain MRE11, NBS1, Rad50, and 
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PML components. A form of this can be observed in vitro, as it has been found that 

telomere repeats can recruit PML through a SUMO dependant mechanism and initiate 

non-replicative DNA synthesis (55). 

Indeed, TRF2 appears to play a vital, but as-yet unclear role in activating DNA 

repair systems. In response to DNA damage such as double strand breaks, PI-3-

Kinases like ATM rapidly phosphorylate Thr-188 of TRF2, triggering it’s relocation from 

telomeres to the sites of DNA damage (40, 150, 291). Phosphorylated TRF2 leads to 

increased survivability of cells after X-Ray induced DNA damage, apparently by initiating 

the Fast DNA repair response and altering the kinetics of H2AX phosphorylation (150). 

Contradictorily, TRF2 inhibits ATM activation (155) possibly suggesting a feedback 

mechanism to regulate ATM activation and TRF2 phosphorylation. TRF2 has been 

shown to inhibit NHEJ and upregulate the HRR system (195). As such, loss of TRF2 

leads to activation of ATM kinase, the p53 tumor suppressor signaling pathway, and the 

MRE11 double-strand break repair system. This leads to induction of cellular 

senescence or apoptosis (47, 84, 107), activation of NHEJ, interchromosomal fusions, 

(302) and can lead to telomeres being fused to other double-stranded breaks at non-

telomeric sites. This can ultimately lead to chromosomal translocations (130). Loss of 

Pot1, additionally, leads to activation of ATR kinase, formation of telomere dysfunction-

induced foci, and induction of apoptosis or cell cycle arrest (84, 146). Sudden large 

deletions of over-elongated yeast telomeres have been observed as a result of 

resolution of the t-loop as if it were a Holliday Junction, underlining the need for strict 

regulation of the extent to which t-loops form (190). 
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Telomere Replication and Maintenance with viruses 

 

Telomere maintenance and DNA repair proteins play an important role in the life-

cycle of numerous DNA viruses that utilize a long-term stability strategy. Many DNA 

viruses utilize similar replication and maintenance strategies to HPV. Epstein Barr Virus 

(EBV), Kaposi’s Sarcoma Herpesvirus (KSHV), Herpesvirus saimiri (HVS), and gamma-

herpesvirus68 (MHV-68) all have a chromosome tethering strategy (reviewed in (201).) 

In addition, a number of other interactions between DNA viruses and the DNA repair 

systems have been demonstrated. HSV 1, EBV, and SV40 recruit Rad51 to replication 

compartments (35, 165, 314). 

Initially, an interaction between the Epstein Barr virus and the telomere 

maintenance system was demonstrated by the laboratory of Dr. Paul Lieberman(325). 

One region of the EBV genome is the plasmid origin of replication, the OriP, which 

consists of the dyad symmetry region (DS) and the family of repeats (FR). Plasmids 

which contain the OriP alone are capable of stable replication and maintenance of 

plasmids in mammalian cells in the presence of the EBV Nuclear Antigen 1 (EBNA1) , a 

factor which is required for viral genome maintenance during latency (325). EBNA1 as 

well as KSHV LANA protein are structural and functional homologues of HPV E2, 

possessing a unique anti-beta barrel DNA binding structure (34, 136). The DS to 

contains 4 sites of nine-base telomeric repeat DNA in the dyad symmetry region, similar 

to those found in the late region of HPV. These repeats are required for DNA replication 

(225) and plasmid maintenance (225, 325). These telomeric repeats also allow binding 

of TRF2 (87), which is required for plasmid replication and maintenance (87, 323). It’s 

believed that one important function of TRF2’s role in OriP replication is recruiting the 

proteins of the Origin Recognition Complex (ORC). TRF2 interacts with EBNA1 (169),  
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and this interaction is required for the replication and maintenance effect (85, 87). These 

processes can be inhibited by overexpression of a TRF2 dominant negative plasmid with 

the N and C terminal domains deleted (85). Another important role of TRF2 is to recruit 

the Origin Recognition Complex (ORC) to the DS (13). Other studies demonstrated that 

the MRN repair complex, which consists of MRE11, Rad50 and NBS1, interact with the 

OriP plasmids in a TRF2-and-cell-cycle-mediated manner, and this interaction has an 

effect on OriP plasmid stability (92). Loss of NBS1 or MRE11 leads to loss of episomal 

maintenance of EBV genomes in certain lymphocyte cell lines (92). Replication at the 

OriP was shown to involve formation of recombination-like structures similar to Holiday 

Junctions during S-phase by 2D Gel electrophoresis.  

KSHV also encodes a structural and functional homologue of the HPV E2 and 

EBV EBNA1 proteins, Latency Associated Nuclear Antigen (LANA.) LANA is responsible 

for latent phase DNA replication, gene expression, and segregation, again similar to the 

E2 and EBNA1 proteins (20).  A study performed by the Renne laboratory demonstrated 

that, along with thirty other proteins, TRF2 associates with a seventy base pair minimal 

replication element from the KSHV genome (149).  Additionally, a number of DNA repair 

proteins, including Ku70, PARP-1, and DNA-PK associates with this minimal repeat 

element (270). LANA co-immunoprecipitates with TRF2, but interestingly only when 

cotransfected with a plasmid containing an intact, wild type copy of the RE. Unlike 

results observed in EBV, no nanomer telomere repeats were found in the KSHV RE, and 

co-transfection of the RE plasmid with the TRF2 dominant negative mutant did not result 

in a significant change in plasmid replication compared to negative control. The study did 

not, however, examine what effect loss of TRF2 function would have on plasmid 

segregation, or if siRNA knockdown of TRF2, rather than overexpression of the 

dominant negative, would have an effect on plasmid replication.  
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Some telomeric factors are associated with papillomaviruses. The most obvious 

example of this is the activation of telomerase expression in cells due to E6 expression 

(163, 303). One possible explanation of this is that hTert can substitute for E6 in E6/E7 

mediated immortalization of human foreskin keratinocyte cells (162), indicating that 

telomerase activation is an important component of HPV maintenance. ChLR1, a DNA 

helicase involved in sister chromatid cohesion, is an E2 interaction partner that has been 

shown to be required for extrachromosomal maintenance of BPV1 genomes (239).  

 

HPV and HRR 

 

Papillomaviruses, like many other low-copy number DNA tumor viruses interact 

with and utilize components of the DNA repair systems, particularly the homologous 

recombination repair system. HPV31 was shown by Liu Laimins’ laboratory to activate 

ATM during the course of its replication within cells, partially due to expression of E7 

(218, 252, 314). E7 binds to ATM and the MRN complex. ATM activation is also required 

for genomic amplification but not stable maintenance replication (218). A number of 

studies have demonstrated that several downstream ATM DNA repair factors are 

recruited to HPV replication foci (125, 218, 251, 255, 287). HPV31 replication in 

keratinocytes increases γH2AX and 53BP1 levels and leads to recruitment of these 

proteins to replication foci. γH2AX  specifically binds to the URR of HPV31. A separate 

study has demonstrated that a similar increase in γH2AX occurs with expression of E1 

from HPV18, 16, 11, and 6B, indicating this is a broad feature of HPV replication, and 

that co-expression of E1 and E2 activates DDR (251). Comet assays have indicated that 

E1 and E1+E2 complexes induce double stranded DNA breaks. The ATPase and DNA 

melting functions of E1 are required for this process, while the sequence specific DNA 

binding function of E1 and E2 are dispensable, suggesting an alternate means of 
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initiating the DNA damage and implying that E2’s primary function in this role is in 

stabilizing E1. Interestingly, inclusion of an HPV origin-containing plasmid reduced the 

DNA damaging activity of E1, suggesting that the presence of an HPV origin may alter 

the E1 protein’s function.  

pATM, BRACA1, RPA, Rad51, ATRIP, TopBP1, and Chk2 are also recruited to 

HPV replication sites, and the amount of these factors increases as differentiation 

progresses in the cells (125, 251). As an increase in differentiation leads to an increase 

in replication of the HPV genomes, it has been theorized that the DNA repair factors are 

recruited to the newly synthesized copies of HPV within these foci. This is supported by 

the gradual increase in levels of activated RPA, which binds to single stranded or newly 

synthesized DNA. Interestingly, however, activation of ATM and Chk2 signaling appear 

to be dispensable for transient as well as maintenance replication (218, 251), leaving the 

question of just what role these processes play in HPV DNA replication.  

 

Specific Aims 
 

 The objective of my research was to examine the relationship between human 

papillomaviruses and their host cells during the maintenance phase of their viral life 

cycle. During this phase, the virus only expresses E6 and E7 to an appreciable level in 

infected cells and is highly reliant on the host cell to provide the factors required for viral 

genome replication and maintenance. DNA viruses which rely on a long-term replication 

strategy in cells traditionally co-opt some or all elements of the DNA repair and, 

discovered more recently, the telomere maintenance systems to provide these functions. 

We thereby utilized bioinformatic, molecular, and cellular methods to investigate the 

interaction between papillomaviruses and their host cells, particularly through the E2 
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maintenance protein and its interactions with the telomere maintenance and DNA repair 

systems, with an aim to better understand the factors which provide long-term stability 

for HPVs.  

Specifically, we utilized bioinformatic analysis to investigate the evolution of the 

E2 protein and binding sites as papillomaviruses evolved to infect a wider range of host-

species and tissue types.  

Secondly, through our well-established yeast replication system, we performed 

experiments to determine which papillomaviruses share the ability to replicate in 

Saccharomyces cerevisiae and to potentially shed light on what common sequence 

features are important. Through this study, we determined that a number of 

Papillmavirus species are not capable of replicating stably in yeast, particularly BPV1, 

which had previously been identified as being capable of replicating short term.  

Finally, we investigated the interaction between TRF2 and HPV16 . Upon 

identifying the presence of nine base telomere repeat sequences in the late region of a 

number of HPVs, we sought to determine if these were necessary for HPV maintenance. 

We utilized a Chromosome ImmunoPrecipitation (ChIP) assay to show that these 

sequences were bound by telomeric and some DNA repair proteins in vitro. We showed 

that in both yeast and mammalian cells, deletion of these binding sites led to an overall 

loss in stability ranging from slight shifts in copy number to complete loss of plasmid 

viability. Through a number of methods, we demonstrated that TRF2 interacts with the 

viral E2 protein, as do a number of other telomere maintenance proteins. Finally, we 

took steps to demonstrate the co-localization of the proteins within cells.  
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Chapter 2 
 

Evolutionary variation of papillomavirus E2 protein and E2 binding sites 
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Abstract 
 

In an effort to identify the evolutionary changes relevant to E2 function, 

within and between papillomavirus genera, we evaluated the E2 binding sites (E2BS)s 

inside the long-control-region (LCR), and throughout the genomes. We identified 

E2BSs in the six largest genera of papillomaviruses: Alpha, Beta, Gamma, Delta, 

Lambda, and Xi-papillomaviruses (128 genomes), by comparing the sequences with a 

model consensus we created from known functional E2BSs (HPV16, HPV18, BPV1). 

We analyzed the sequence conservation and nucleotide content of the 4-nucleotide 

spacer within E2BSs. We determined that there is a statistically significant difference in 

GC content of the four-nucleotide E2BS spacer, between Alpha and 

Deltapapillomaviruses, as compared to each of the other groups. Additionally, we 

performed multiple alignments of E2 protein sequences using members of each genus in 

order to identify evolutionary changes within the E2 protein. 

When a phylogenetic tree was generated from E2 amino acid sequences, it 

was discovered that the alpha-papillomavirus genus segregates into two distinct 

subgroups (α1 and α2). When these subgroups were individually analyzed, it was 

determined that the subgroup α1 consensus E2BS favored a spacer of AAAA, whereas 

subgroup α2 favored the opposite orientation of the same spacer; TTTT. This 

observation suggests that these conserved inverted linkers could have functional 

importance.
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Introduction 

The E2 protein serves many functions with its primary role being that of a 

transcriptional regulator.  E2 is a negative regulator for the expression of the oncogenes 

E6 and E7 (184).  E2 polypeptides contain three probable domains: a DNA binding 

domain (DBD) located at the C-terminus, an N-terminus transactivation domain, and an 

internal “hinge” domain. Both the C-terminal and N-terminal domains are relatively well 

conserved within the PVs (254). E2 binds as a dimer at DNA-binding sites and this 

action is mediated through the DBD (202). The E2 DBD forms a dimeric β-barrel and 

each strand contributes a half-barrel. The dimer interface has a hydrophobic core and 

uses extensive hydrogen bonding between subunits to maintain tight binding. This β-

barrel core contains elaborately packed side chains that contribute to the stability of the 

dimer. There is a poorly conserved loop connecting β-strands 2 and 3. This loop varies 

from 6-10 residues. The tertiary structure of characterized E2 DBDs is similar, but there 

appears to be variation in the orientations of the two subunits (141). There is some 

evidence to suggest that the activation domain mediated oligomerization could influence 

interaction between E2 molecules bound at distant E2-binding sites forming DNA loops 

and other DNA structures (8, 141).  

The consensus sequence 5’-ACCgNNNNcGGT-3’ is recognized by E2, with the 

position 4 and 9 residues allowing some variability. A number of studies have been 

performed to examine the binding of E2 protein to its cognate binding site (33, 83, 111, 

141, 144, 249, 257, 293). The 4-nucleotide spacer sequence varies by HPV type, and 

has been identified as being critical for determining E2 binding affinity through indirect 

readout as well as playing a potential role in gene regulation, despite having no 

predicted nucleotide-amino acid contacts from crystal structure (33, 83, 141, 144, 328). 
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E2 binds DNA as a homodimer with each monomer supplying an alpha helix to contact 

two successive major grooves of the target site (83, 141) 

Four typical E2 binding sites are conserved in the upstream regulatory region 

(URR) of most papillomaviruses numbered according to their distance from the early 

promoter (202). Each site is differentially regulated and demonstrates variable binding 

affinity for the E2 protein, resulting in varying replication and transcriptional effects 

during the viral life cycle (63, 191) presumably as a result of differences in E2 binding 

affinity (141) due to sequence variation as well as methylation of the E2 binding site 

(257, 293). These binding sites are typically well conserved across all papillomaviruses. 

However, in some cases variation in the number and location of some E2 binding sites 

does exist, including a predicted fifth binding site within the URR of betapapillomaviruses 

(103) and some alphapapillomaviruses (257) as well as observation of up to 17 

sequences with ability to bind E2 from the URR of bovine papillomavirus 1  (249).  

In this study, we examined the evolutionary divergence in E2BS recognition by 

the E2 transcriptional regulatory protein. Currently, the majority of the work performed on 

the E2 protein function has been performed on domains from a relatively small number 

of papillomavirus types. To better understand the binding properties of E2 from a wide 

spectrum of HPV strains, we performed an observational study in which we used 

bioinformatic tools to generate a list of putative E2BS sequences matching the 

consensus in all papillomaviruses currently classified by ICTV and analyzed them for 

variations in binding site number, location, and differences in the 4-nucleotide spacer 

region between the largest of the HPV genera, the Alpha, Beta, Gamma, Delta, Lambda, 

and Xipapillomaviruses. We then performed multiple alignment and phylogenetic 

analysis using the E2 amino acid sequences of these viruses to observe evolutionary 

patterns from an E2-Centric perspective. Finally, we performed sequence alignment of 
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the viral E2 protein C-terminal DNA binding domains of each genus and observed that a 

greater degree of variation is present in the Alphapapillomaviruses compared to Beta. As 

one of the characteristics associated with the classification of papillomaviruses into their 

respective genera includes the ability to infect mucosal and cutaneous epithelia as well 

as fibroblast tissue, we propose that evolution of the E2 protein and its cognate binding 

site correlate with the adaptive radiation papillomaviruses underwent during the course 

of evolving to infect new tissue types. 

 

Materials and Methods 

Putative E2 Binding Site Identification and Analysis 

 

Initially, we obtained sequences for the confirmed E2 binding sites from three 

representative, well-characterized papillomavirus species, HPV16, HPV18, and 

BPV1(141, 176), to create a broad, complete representative training data set. We then 

utilized Multiple EM Motif Elicitation (MEME) software to use statistic modeling 

techniques to create a consensus motif sequence for E2 binding sites within the 

genomes of papillomaviruses(15). This motif was then used to search through all 

complete papillomavirus sequences (obtained from the Papillomavirus Episteme (PaVE) 

database containing information from Refseq and Genbank (1, 232, 248)) for all 

papillomavirus genera containing 5 or more members (HPV 2-40, 42-45, 47-62, 65-78, 

80-96, 99, 100, 102, 104-107, 110, 111, FA75/KI88-03, RTRX7, BPV1-9, COPV, DPV, 

FdPV1, FdPV2, LrPV1, PlpPV1, PcPV1, UuPV1, and MfPV1-10, utilizing the Motif 

Alignment and Search Tool (MAST)(16). For later phylogenetic analysis of 

alphapapillomavirus subgroups, we divided our data set to into high and low risk groups 

and alphaPVs capable of infecting cutaneous keratinocytes. The high risk group 
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included HPV 16, 18, 26, 31, 33, 35, 39, 45, 52, 56, 58, 59, 67, 73, and 82. The 

cutaneous subgroup included HPV2, 3, 10, 27, 28, 29, 57, 78, and 94. 

E2BS Sequence Analysis 

 

 After retrieving the list of putative E2BSs from the ICTVdb papillomavirus 

sequences, the data was sorted based on a number of criteria. Recovered sequences 

were manually analyzed from the resultant MAST output to observe the genome location 

of the identified binding sites as well as the GC content of the four base spacer 

sequences. Binding sites were classified as either within or outside the LCR according to 

the criteria of being located between the end of the L1 opening reading frame and the 

beginning of the E7 open reading frame. Binding sites were similarly separated into their 

respective papillomavirus genera and the identified E2BSs were analyzed using MEME 

to generate a SequenceLogo to observe the consensus E2BS sequences for each 

papillomavirus genus. Similar MEME analysis was performed to compare the E2BSs of 

low and high risk alphapapillomaviruses.  

Protein Sequence Alignment 

 

 Amino acid sequences for all known E2 proteins within the papillomaviridae 

family were acquired from NCBI and sorted into the respective papillomavirus genera 

analyzed in 2.1 and 2.2. To increase the significance of results, analysis was limited to 

the alpha and betapapillomavirus genera, as the other genera possess less than ten 

members each. All E2 sequences were then aligned using Muscle (100). Some 

sequences (HPV77, 3, and 29) were removed due to long stretches of non-homologous 

repetitive DNA in the linker region. Alignments were then repeated, focusing specifically 

on aligning the amino acids located within the C-terminal DNA binding domain of E2. 
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Weblogo was then used to generate a graphical representation of the sequence 

alignments.  

Phylogenetic Analysis  

 

We performed phylogenetic analysis to examine evolution of papillomavirus E2 

amino acid sequences. Complete amino acid sequences were obtained from NCBI for all 

papillomaviruses analyzed in 2.1 and subjected to multiple alignment using COBALT 

software (238). The multiple alignment was then used to draw phylogenetic trees using 

Neighbor Joining and Kimura protocols.  

Results 

E2BS Identification 

 

To examine the evolution of the E2 DNA binding site (E2BS) sequence, we 

utilized the sequence motif analysis software Multiple EM Motif Elicitation (MEME) to 

generate a consensus DNA binding site. Initially, we generated a training set based on 

the confirmed E2 binding sites from HPV16 and 18 as well as BPV1, as these are well 

characterized and representative of the papillomavirus family. The resulting binding site 

motif Sequence Logo is shown in panel 2.1A, demonstrating the high conservation of 

bases from positions 1-3 and 10-12.  As expected, little sequence conservation from the 

four base spacer region was observed. Genome sequences were collected from ICTVdb 

(248) and sorted into the various papillomavirus genera. Papillomavirus genera were 

eliminated from the rest of the analysis if they contained less than five members to 

improve the statistical significance of results. In total, 68 alpha, 35 beta, 6 delta, 7 

gamma, 7 lambda, and 5 xipapillomaviruses were analyzed, totaling 128 

papillomaviruses (111 human and 17 animal sequences). These were then used to 
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identify the location of E2 binding sites utilizing MAST software to identify DNA 

sequences with high sequence identity to the MEME generated binding site motif.  

 As expected, the four conserved binding sites located within the URR were 

identified in the majority of papillomavirus species examined (data not shown.) However, 

a number of additional potential E2 binding sites were identified within and outside of the 

URR. The number of E2 binding sites identified averaged between four and six per 

genome for the alpha, beta, gamma, lambda, and xipapillomaviruses, whereas the delta 

papillomaviruses averaged eight binding sites per genome, (Fig 2.1B) due in large part 

to the 14 E2BSs identified in BPV1. The majority of these sequences were located within 

the URR as expected, averaging approximately 3 for the alpha, beta, gamma, lambda, 

or xi, and 7 for delta.  

E2BS Sequence Analysis 

 

 The identified E2 binding sites were then collected and examined to identify the 

GC content of nucleotides located within their four base spacer regions. G and C 

nucleotides from the observed E2BSs were counted and tabulated to obtain the average 

GC content of the four nucleotide spacer. Most cutaneous papillomavirus genera 

contained approximately 25 to 30% GC content within the spacer region (Fig. 2.1C). 

Alphapapillomaviruses in general tended to have very low GC content (15%) and 

deltapapillomaviruses tended to be very high (approximately 50%, indicating no 

statistical preference for GC versus AT bases.)  

 When E2BSs were sorted into “within the URR” and “outside the URR” groups, 

certain trends became apparent. First, alphapapillomaviruses and to a lesser extent 

xipapillomaviruses seemed to have a unique requirement for AT nucleotide rich spacers 

within the URR and a much higher GC content in E2BSs located outside. Gamma and 
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lambdapapillomaviruses seemed to possess an opposite trend, with a 15-18% GC 

content outside the URR and significantly higher found inside. Deltapapillomaviruses 

tended to have a much higher GC content within the spacer than the other 

papillomavirus genera, while the betapapillomaviruses was approximately 30% GC rich.  

 To further this analysis, we performed MEME analysis on the identified E2BSs 

for each papillomavirus genus to identify sequence variation binding sites by genus (Fig. 

2.1D). As expected, nucleotides 1-3 and 10-12 were well conserved across 

papillomavirus genera. Some variation was observed in the preference for C and G 

nucleotides at positions 4 and 9 respectively, particularly in the gamma and delta genera 

at position 9. The four nucleotide spacer is, as expected, highly variable between 

papillomavirus genera, however some trends are apparent. Alpha papillomaviruses 

seemed to have the most consistent sequence conservation, particularly at positions 5-7 

where A nucleotides were highly conserved. A and T bases were overrepresented in all 

papillomavirus genera except deltapapillomaviruses. Despite little evidence of evolution 

of contact nucleotides, we observed that each of the papillomavirus genera seem to 

have varying preferences for binding site spacer sequences. 

E2 Protein Phylogenetic Analysis 

 

 To examine E2 evolution from a protein perspective, we acquired amino acid 

sequences for all the E2 proteins from papillomaviruses used for the E2BS analysis. The 

E2 sequences were then analyzed using COBALT software under Neighbor Joining and 

Kimura protocols. The resultant phylogenetic tree is shown in Figure 2.2A. As shown, 

when analyzed simply from E2 amino acid sequences, papillomaviruses sort into specific 

clades matching with the official genera classifications which, as stated previously, were 

based on L1 amino acid sequences (81) 
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 Three specific clades become apparent based on this analysis: one containing 

the deltapapillomaviruses, one containing the alphapapillomaviruses, and a third 

encompassing the other genera analyzed. The delta clade possessed a large degree of 

evolutionary distance compared to the other clades from the COBALT analysis, implying 

a significant evolutionary divergence in terms of the E2 protein from the other 

papillomaviruses. One papillomavirus, FDPV2, did not sort out with the other members 

of the lambdapapillomavirus genus and did not associate with any of the other clades 

identified by this analysis.  

The alpha clade further subdivides into two subclades, in this study labeled as α1 

and α2. When analyzed independently, specific trends were identified for these two 

subclades. The individual members of the subclades possess specific infectious 

characteristics (Fig 2.2b). The majority of the human papillomaviruses from subclade α1 

are considered to be high risk for progression to cervical cancer. While they do not 

cluster together particularly well within the subclade, one subclade contains both HPV16 

and HPV31, two of the papillomaviruses that are most associated with cervical cancer. 

Interestingly, subclade α1 also contains a cluster of viruses infecting longtailed and 

rhesus macaques, which seems to have diverged less than the other members of the 

subclade (Fig 2.2A). Subclade α2 contains two clusters of alphapapillomaviruses 

capable of infecting cutaneous keratinocyte cells as well as three clusters associated 

with large genital warts.  

MEME Analysis of Alpha Subclade E2BSs 

 

 Given the results of the phylogenic analysis for the alphapapillomavirus genus, 

we performed MEME analysis on the identified E2BSs for each of the 

alphapapillomavirus subclades, as well as those papillomaviruses classified as high and 
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low risk of progression to cancer and the two clusters containing the 

alphapapillomaviruses capable of infecting cutaneous keratinocytes (Fig. 2.2C.) Given 

that subclade 1 primarily contains high risk viruses, the consensus motif for alpha 

subclade1 and high risk alphapapillomaviruses are essentially identical. No significant 

difference was apparent between the high risk and low risk viruses outside of a slight 

under-representation of the guanine nucleotide at position 4 which could, potentially, 

suggest reduced susceptibility at this site for methylation (see discussion). Cutaneous 

papillomaviruses possessed a significantly reduced preference for A/T nucleotides within 

the four base spacer. Interestingly, the subclade 2 consensus motif appears to contain a 

preference for bases within the four base spacer of thymine rather than adenine. Given 

that the E2BS sequence is a pseudo-palindrome, this implied that the consensus motif 

for clade 2 is an inversion of the motif from clade 1.  

E2 Amino Acid Sequence Conservation 

 

One of the primary differences between alpha papillomaviruses and the other 

genera is the ability to infect mucosal versus cutaneous keratinocytes.  Consequently, 

we examined whether a similar level of divergence existed in the amino acid sequence 

of the protein itself. In order to demonstrate evolutionary divergence of human 

papillomavirus E2 proteins, we first obtained complete amino acid sequences for all the 

Alphapapillomaviruses and a representative genus of cutaneous papillomaviruses, the 

Betapapillomaviruses. Other papillomavirus genera were excluded, as these respective 

groups averaged less than ten members, thus the alignments could not be considered 

reliable. We initially performed sequence alignments on the entire protein. However, it 

was determined that the linker region of Alphapapillomavirus sequences, which is not 

well conserved within the HPV respective types, was skewing the results of the 

alignments (data not shown). We therefore adjusted our sequences to contain only the 
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C-terminal 80 amino acids of the E2 protein, which roughly corresponded to the DNA 

binding domains (DBD) (Figures 2.3A, 2.3B). It is immediately apparent that 

Alphapapillomaviruses seem to have a great degree of sequence diversity relative to 

Betapapillomaviruses. A series of representative alignments obtained an average 

sequence identity of 41% for Alphapapillomaviruses when compared to 65.25% identity 

for Betapapillomaviruses. The differences were also apparent when the logos 

representative alignment program was used to generate a consensus sequence (Figures 

2.4A, 2.4B) even within the well-conserved region of amino acid sequence that makes 

direct contact with the nucleotides of the E2BS. 

Discussion 
 

The vast majority of papillomaviruses analyzed using MEME and MAST during the 

course of this study conform to the expected number and location of the four conserved 

E2BSs within the URR of their genome, with some variations in individual strains. The 

averages across all the genera were between 4-6 E2BSs, outside of the 

Deltapapillomavirus genus which was contained significantly more. The majority of the 

sites identified from the study were located within the URR, as expected, though in some 

cases sequences that have the potential to be bound by E2 protein were identified within 

the papillomavirus coding sequences. Whether these putative downstream E2BSs are 

actually occupied during active infection is an open question but could, presumably, 

significantly impair the expression of the ORF the binding site is located within by 

blocking the progress of RNA polymerase.  

Papillomaviruses are classified by their tissue tropism, genome organization, and 

sequence divergence in a conserved region of the L1 open reading frame (82). 

However, recent phylogenetic analyses have demonstrated that alignment based off of 

the E1 and E2 protein sequences results in a phylogeny which better clusters 
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papillomavirus species in terms of their epidemiology and oncogenicity (176). The E2 

protein is one of four genes which are present in all known papillomaviruses, but has the 

highest DN/DS ratio of the four, or ratio between nonsynonymous versus synonymous 

substitutions (223). This is not surprising because E2 plays numerous functional roles in 

the cell.  For example, E2 regulates transcription, facilitates DNA replication, and 

regulates viral genome maintenance (202). It is logical, then, that E2 would be under 

significant evolutionary pressure to adapt to new cellular environments. 

E2 proteins bind a consensus palindromic sequence ACCgNNNNcGGT through 

a dynamic, water mediated interface (111, 141). The NNNN central region or “spacer” is 

conserved in length, but the sequence varies by species and individual binding site 

position. Hierarchical occupation of the E2BS by the protein has important functional and 

regulatory consequences for both transcription and replication during infection. Previous 

studies have shown that A:T-rich spacers have an increased binding affinity in certain 

papillomavirus species (141, 202). Specifically, while some Alphapapillomaviruses like 

HPV16 are acutely sensitive to AT concentration in the spacer region, others like BPV1 

are essentially insensitive. Hegde et. al. proposed that the reason for this is due to a 

reduced ability possessed by the E2 protein of some Alphapapillomaviruses, specifically 

HPV16, to bend DNA into a conformation which fits within the E2 DNA binding pocket 

(141). Essentially, AT rich nucleotide motifs are intrinsically rigid and pre-bent into a 

shape that conforms to the E2 protein DNA binding domain.   The results of this study 

support the concept that Alphapapillomavirus E2BSs possess approximately 95% A/T 

nucleotides within the spacer region, but only 75% in the cutaneous papillomavirus 

genera, and 50% in Deltapapillomaviruses. With the current limited understanding of 

nucleotide sequence recognition, specifically for indirect readout which occurs in regions 

like the E2BS spacer where no direct nucleotide-amino acid contacts are made, 
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predictions of binding affinity are limited to sophisticated bioinformatic modeling software 

and empirical data identified using methods like quantitative EMSA. However, regions of 

increased positive charge tend to correlate favorably with DNA deformation ability, 

presumably through non-symmetrical charge neutralization by interactions between 

positively charged amino acid residues and the negatively charged phosphate backbone 

(285) or by actively attracting the negatively charged DNA to positive residues (156). 

Observation of alignments of the Alpha and Beta HPV E2 DNA binding domains (Figure 

3, 4) appear to support this assertion, as a greater number of conserved positively-

charged amino acid residues, both within the nucleotide contact region as well as 

outside, were present in the Betapapillomaviruses. This observation correlates with the 

increased presence of GC residues in the spacers of Betapapillomavirus E2BSs. 

Additionally, a cluster of positively charged residues located c-terminal from the DNA 

interaction region has been implicated in providing the relative insensitivity to spacer GC 

content observed with the BPV E2 protein (141). Interestingly, we observed that the 

consensus MEME motif diverged even within distinct papillomavirus genera. Specifically, 

the two alpha subclades’ consensus binding site possessed an inverted four base 

spacer. Typically, when the four conserved binding sites are observed individually, the 

spacer of binding sites 5’ of the viral origin of replication tend to be oriented such that the 

consensus binding site possesses A nucleotides whereas those 3’ of the ori contain the 

inverse, or T nucleotides(257). As a result, given that the E2BS sequence resembles a 

palindrome, this would likely result in the E2 protein binding in opposite orientation. The 

functional consequences of this have yet to be fully explored, but may have significant 

biological implications.  

Within the viral genomes of the respective strains, divergence of E2BS locations 

correlated with tissue type that was infected by the respective strains.  This may have 
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effects on viral transcriptional regulation. There are 4 primary conserved binding sites 

near the viral origin of replication termed BS1, BS2, BS3 and BS4.  E2 binding to the first 

site (BS1) interferes with TATA box recognition by the TATA binding protein, binding to 

the second (BS2) and third (BS3) sites causes promoter repression by competition with 

cellular transcription factors and binding to the fourth site (BS4) up regulates viral early 

gene expression (141).  In addition, binding to BS3 is necessary for DNA replication.  

When E2 protein concentration is low, the promoter for the E6 and E7 oncogenes is 

activated and BS4 is occupied.  When E2 protein concentration is high, the E6 promoter 

is repressed and BS1 and BS2 are occupied by E2 (141).  Differential affinities for the 

spacers of these E2BSs have been predicted to play a regulatory role in E2 mediated 

viral gene transcription (141). The vast differences in number and location of E2BSs 

identified in this study, however, would seem to suggest that there may be significant 

differences in this from one virus species to another. Additionally, the E2 proteins of 

individual papillomaviruses have demonstrated variable ability to tolerate GC content of 

the four base spacer(141) and binding site methylation(257) may further individualize the 

specific regulation strategy utilized by each.  

All four of the E2BSs in the LCR are almost exclusively AT rich. However, predicted 

E2BSs outside the LCR generally contained higher levels of GC content. This suggests 

that these binding sites would tend to have much lower binding affinity for E2. 

Considering that external binding sites were not conserved between various HPV types 

and the fact that E2 has numerous functions that are up or down regulated during the 

course of the viral life cycle, it is difficult to speculate what roles these additional binding 

sites might play, including remodeling the chromosome structure or potentially blocking 

the progress of RNA polymerase complexes during the coding process. Further 

complicating the issue is the fact that, in BPV1, 17 total E2 binding sites have been 
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previously identified by gel shift assay, many of which had significantly divergent 

sequences from the consensus (175). However, the study also determined that the 

binding sites that were more closely related to the consensus generally had the highest 

binding affinity for E2, so it is likely that the binding sites identified from this study are 

preferentially filled at more stages of the viral life cycle. This presents a possible 

regulatory mechanism to control occupation of E2BSs and thus their transcriptional 

and/or replication effect.  

One explanation for the greater degree of variability in mucosal HPVs could stem 

from the wide tissue types infected by Alphapapillomaviruses. Much of the evolutionary 

differences observed in the study correlate with differences in preferred infection site. 

Mucosal epithelia infected by Alphapapillomaviruses ranges from oral to anogenital, all 

of which could provide a slightly different environment for HPV replication. Additionally, 

while cutaneous tissue tends to be relatively isolated from the immune system, mucosal 

epithelia is much more actively surveyed by the immune system and exposed to IgA. 

This could also potentially serve as a driving force for differentiation in E2 protein 

function. Previous work has established that differences in tissue type can have 

significant effect on LCR transcription enhancer activity (213, 253). E2-host co-evolution 

could then be a potential explanation for the extreme level of tissue specificity exhibited 

by most members of the papillomaviridae family. 

In general, GC content tends to be low in papillomaviruses, presumably as a means 

of eliminating targets for methylation by the host gene regulation machinery (257). 

Sanchez et. al. determined that there was an evolutionary selection for CpG methylation 

sites within the E2BSs of papillomaviruses at positions 4-5 and 9-10(257). Our analysis 

demonstrated a varying prevalence of G and C nucleotides, respectively, at these sites 

between the papillomaviruses. Beta and Xipapillomaviruses both possessed a much 
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higher prevalence for CpG methylation site at one or more of the potential sites 

compared to the average for the other genera. Deltapapillomaviruses seemed to favor 

the presence of a methylation site at the 4-5 position but not at the 9-10 position. For 

other papillomaviruses, the patterns are somewhat more ambiguous, which is consistent 

with a previous study  (257, 293). As such, if the same holds true for other 

papillomavirus genera, it is expected that, as our results come from a combination of all 

the E2BSs, this pattern would be somewhat skewed. A similar effort to examine the 

individual conserved E2BSs for papillomaviruses beyond the alpha genus would 

possibly determine if similar methylation patterns exist, but is beyond the scope of this 

study.  

One important observation from this experiment is the large degree of variability 

between both the proteins and their counterpart DNA binding sites between 

papillomavirus genera. Deltapapillomaviruses averaged a larger number of E2BSs within 

the URR (skewed somewhat by the 17 reported E2BSs in BPV1) than any of the other 

genera examined in this study, and demonstrated a large degree of insensitivity to GC 

content in the 4 base spacer region. Conversely, the Alphapapillomaviruses showed a 

preference for A/T nucleotides within the four highly conserved E2BSs in the URR, 

almost to the point of exclusion at some base positions. The other genera ranged 

somewhere in between. It’s tempting to infer that, as these three groups primarily infect 

different tissue types (mucosal epithelia for alpha; cutaneous for beta, gamma, lambda, 

and xi; and fibroblasts for delta) that this in some way represents an element of the 

adaptive radiation the virus underwent to adopt these infectious substrates. Still, 

whatever the explanation for this observation, it should remind researchers to be 

cautious when drawing generalizations between papillomavirus genera E2 proteins, 

since a particular feature of BPV1 E2 protein may function differently or even be absent 
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for other PVs, as was eventually discovered to be the case with HPV16 and BPV1’s 

respective utilization of Brd4 for chromosome replication(204).  
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Figure 2.1: Consensus Sequence Analysis of E2BSs Throughout Papillomavirus 

Genera. Well characterized E2BSs from HPV16, 18, and BPV1 were analyzed using 

MEME software to generate a consensus E2BS motif (Fig 2.1A.) This motif was then 

utilized by MAST software to search through the complete genomes of 128 

papillomaviruses obtained from NCBI and identify sequences with high identity to the 

consensus. The average number of E2BSs identified per genome were sorted into the 

six largest papillomavirus genera and were further analyzed to determine if the binding 

sites were located within or without the upstream regulatory region (URR) of the genome 

(Fig 2.1B.) Identified E2BSs were then manually analyzed to determine the GC content 

of their four base spacer regions. Results were again calculated in terms of average GC 

content of E2BSs for each of the individual papillomavirus genera both inside and 

outside the URR as well as in total (Fig 2.1C.) Finally, the identified binding sites were 

used for MEME analysis to identify the consensus E2BS motif for each of the six 

papillomavirus genera analyzed in this study (Fig 2.1D.)  
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Figure 2.2: Phylogenetic Analysis of Papillomavirus E2 Protein E2 protein amino 

acid sequences for each of the papillomaviruses included in this study were obtained 

from PDB and used for COBALT analysis. The resulting multiple alignment was then 

used to generate a phylogenetic tree to analyze papillomavirus evolution in terms of the 

E2 protein (Fig 2.2A.) Clades were identified corresponding to the classical PV genera 

and indicated on the tree, as well as two subclades of the alphapapillomavirus genera. 

These were then expanded and examined individually, and the locations of various types 

of alphapapillomaviruses (specifically those capable of infecting cutaneous keratinocytes 

and those possessing a high risk of progression to cervical cancer) were indicated (Fig 

2.2B.) HPV E2BSs from part one were then reanalyzed using MEME software to identify 

a consensus E2BS for the subclades identified in 2b, ie subclade 1 and 2, high and low 

risk alphapapillomaviruses, as well as those capable of infecting cutaneous 

keratinocytes tissue (Fig 2.2C.)  
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Figure 2.3: E2 DNA Binding Domain Protein Alignment Amino acid sequence for all 

known E2 proteins were acquired from NCBI and aligned using Muscle . (2.3A) This 

figure shows the sequence alignment of the Alphapapillomavirus c-terminal DNA binding 

domain of E2. Colors represent homologous amino acids. (2.3B) This figure shows the 

sequence alignment of the Betapapillomavirus c-terminal DNA binding domain of E2.  

  



www.manaraa.com

 
 

 

2.3A

 

  



www.manaraa.com

 
 

2.3B

 

  



www.manaraa.com

 
 

Figure 2.4: E2 DNA Binding Domain WebLogo Weblogo was used to generate a 

graphical representation of the sequence analysis of the c-terminal DNA binding domain 

of E2. The black box represents the conserved region where E2 protein binds to DNA in 

the Alphapapillomavirus (2.4A) sequence similarity and the Betapapillomaviruses (2.4B).  
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Chapter 3 
 

Papillomaviruses Replicate with Varying Success in Saccharomyces 

cerevisiae 
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ABSTRACT 
 

Human papillomaviruses (HPVs) replicate in mitotically active basal keratinocytes 

as nuclear plasmids.  Two virally encoded proteins, E1, a helicase, and E2, a 

transcription factor, are important for DNA replication and stable maintenance of HPV 

episomes in host cells.  In previous studies, we have demonstrated that HPV16 can 

replicate stably in yeast (Saccharomyces cerevisiae) (7, 158).  In this study, we further 

demonstrate that multiple HPVs (Types, 6, 16, and 31), when linked to the Ura3 

nutritional marker, successfully replicate and are maintained extrachromasomally in 

yeast.  We found differences in replication efficiency; HPV6-Ura3 was the most robust 

replicator, followed by HPV31-Ura3 and HPV16-Ura3 respectively, while HPV11-Ura3 

and HPV18-Ura3 were unable to replicate in the absence of E2 expression.  However, 

we found no evidence that the BPV-Ura3 construct could replicate stably in yeast and 

the addition of a yeast centromere provided only partial complementation.  Together, our 

studies indicate that there are intrinsic genotype-dependent differences in HPV 

replication activity in yeast. 
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INTRODUCTION 
 

Human papillomaviruses (HPVs) are small, double stranded, circular DNA 

viruses that infect squamous epithelial cells.  Two hundred species of HPVs have been 

identified and are classified into low and high risk categories based on their association 

with cervical oncogenesis.  Integration of the viral genome into host chromosomes is 

necessary for the development of cervical cancer (306).   

The life cycles of papillomaviruses are closely associated to the their host cells. 

During the course of epithelial cellular differentiation, the virus shifts through three 

replication phases in response to keratinization: establishment, wherein early viral 

replication occurs; maintenance, where the viral genome is stably maintained episomally 

by replicating through a theta intermediate; and amplification, where viral replication 

shifts to a rolling-circle method and copy number increases in preparation for 

encapsidation (112). Papillomavirus DNA replication requires primarily cellular factors, 

recruiting DNA polymerase alpha along with other elements of the cellular replication 

machinery (240).  The accepted model utilizes the viral proteins E1 and E2 for genomic 

amplification (95, 250, 301).   

The E1 protein functions as an ATP dependent helicase and recruits DNA 

polymerase alpha to act as an elongation factor (117, 217, 242).  E2 has multiple 

functions, including acting as a transcriptional trans-activator, an origin recognition 

protein, and facilitating binding of E1 to the E1 dependent origin (244). Additionally, E2 

serves as a maintenance factor by improving inheritance through mechanisms that are 

not entirely understood, but may be the result of E2 binding either to chromosomal DNA 

or mitotic spindles (22, 71, 170, 273).  Previous research has indicated that 

papillomavirus genomes can be replicated and maintained stably in the absence of E1 
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and E2 (7, 158, 336).  Silencing mutations of the individual HPV open reading frames 

have shown that none of the individual ORFs are required for successful genomic DNA 

replication and maintenance (7).  Since it has been demonstrated that replication of 

papillomavirus genomes occurs in the absence of viral proteins in yeast, it is apparent 

then that cellular factors must replace E1 function.  For instance, the E1 protein forms 

hexamers which function in a similar manner to cellular helicases such as Werner’s 

(WRN) and Bloom’s (BLM) Syndrome Helicases, members of the RecQ family, and the 

minichromosome maintenance proteins (MCM) (102, 117, 216, 242).  It is conceivable, 

then, that host factors could be adapted to perform similar replication functions in place 

of viral proteins like E1, suggesting that an E1-independent mode of replication could be 

relevant during the maintenance phase of the HPV lifecycle. 

Studies have previously indicated that HPV16 is capable of replicating in S. 

cerevisiae in an E1 independent manner (7, 158, 159). Previous efforts by the Lambert 

laboratory identified regions of the HPV16 genome which are responsible for this trans 

factor independent replication, showing that portions of the L2 and L1 open reading 

frames possess replication and maintenance function (158). Plasmids with these cis-

acting factors present were capable of long-term, stable, episomal replication 

independent of viral replication factors. 

Having initially established that HPV genomes can replicate in Saccaromyces 

cerevisiae, the HPV/yeast system has proven easy to manipulate for the study of certain 

aspects of the HPV lifecycle, including transcription, replication and production of virus-

like-particles (VLPs).  HPVs 6b, 11, 16, 18, and 31 replicate in short-term assays when 

transformed into competent yeast (5-7, 158, 336, 337).  Furthermore, the Frazier 

laboratory has reported that BPV1 replicates robustly in yeast (336, 337).  Recently the 

Khan laboratory has reported that HPV1 can replicate in yeast, but requires a 
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centromere to be maintained stably (51). Kim et. al. mapped both ARS and CEN 

replication functions in S. cerevisiae to the late region of HPV16(158). The great degree 

of homology between the genomic replication mechanisms of yeast and higher 

organisms creates the possibility that similar mechanisms could be involved in 

papillomavirus replication in higher eukaryotes, especially during the maintenance phase 

when expression of E1 and E2 is minimal.  

In this study, we investigate the long term replicative and maintenance 

competence of five HPV types: HPV6b, 11, 16, 18, and 31 along with BPV1.  Replicons 

containing a Ura3 nutritional marker were created for each papillomavirus, transformed 

into yeast, and analyzed by Southern Blot to confirm that HPV6b, 16, and 31 genomes 

were replicating episomally while HPV11 and 18 were not.  Notably, BPV1, which had 

previously been reported to replicate in yeast (336, 337), failed to show significant long 

term growth in selective media even when complemented with the inclusion of a 

centromere.   

 

MATERIALS AND METHODS 
 

Yeast Strains, Plasmid Isolation and Transformation Methods.  The haploid yeast 

strain YPH500 (MAT ura3-53 lys2-801 ade2-101 trp1-63 his3-200 leu2-1) was used for 

all described experiments.  Yeast was grown on YNB minimal media omitting uracil (Ura) 

at 30 °C for all transformation and Southern experiments, while YPD complete media 

was utilized additionally to examine plasmid stability and loss rate.  The EZ Yeast 

Transformation kit (Zymo Research, Orange, Calif.) was used for transformation with the 

experimental plasmids according to the kit protocol and the Zymoprep kit (Zymo 
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Research, Orange, Calif.) was used for yeast plasmid minipreps according to company 

specifications.  

Plasmid Constructions   Numerous constructs were created using similar methods.  The 

Ura3 gene was ligated into unique restriction sites in either the papillomavirus genome 

or vector sequence, selected in E. coli grown on Luria Broth media containing Ampicilin, 

and the DNAs were isolated using the Qiaprep Spin Miniprep Kit (Qiagen Sciences, 

Maryland 20874) in accordance with the manufacturer’s instructions.  The Ura3 markers 

were cloned into the various constructs as follows: pPA102 (pGEMT, AgeI), pPA103 

(HPV16, XhoI), pPA104 (Puc18, SalI), pPA106 (HPV31, SpeI), pPA112 (PPR 322 with 

HPV18 ligated into Nco site, AVRII), pPA116 (HPV6, AgeI), pPA117 (HPV11, AgeI),  

and pPA118 (BPV, Mlu I).  Construct PA119 was created by digesting pΔYac with AvrII, 

releasing the CEN element, and then ligating this fragment into a unique AvrII site in 

pPA118.  PRS 316, an ARS+ CEN+ Ura3+ yeast replicon, was included as a positive 

control.  

DNA Replication in Yeast  Two-hundred ng of each plasmid was transformed into 

YPH500 yeast, plated on Ura- selective agar, and incubated for 3 days at 30°C.  Plates 

were then scored for number of colonies formed and restreaked on selective solid agar, 

grown for an additional 3 days, and inoculated into 5mL of Ura- liquid media and allowed 

to grow for approximately 40-50 cell generations.  OD600 was recorded for each sample 

to obtain approximate number of cell equivalents per milliliter, and samples were diluted 

in order to equalize this number, allowing for a determination of copy number by 

Southern Blot.  Low molecular weight DNA was isolated from liquid culture as described 

above.  The DNA was then loaded onto a 1% agarose gel, electrophoresed, transferred 

to nitrocellulose, and probed with 32P-radiolabeled pPA104.  Radiolabeling was 
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performed using the Amersham Rediprime II kit (GE Healthcare UK, Buckinghamshire) 

in accordance with the manufacturer’s instructions.  

 

Growth Curves   5 milliliters of liquid Ura- media were inoculated to an OD600 of 0.15 with 

each of the papillomavirus genomes transformed into S. cerevisiae, as well as PRS316. 

In addition, 5 mL of YPD media was inoculated to an equivalent OD600 with 

untransformed YPH500 yeast to establish a standard doubling time.  OD600 for each 

sample was recorded at time points 0, 3, 6, 8, 24, and 30 hours after inoculation.  

Growth rate was then determined by calculating doubling time during the mid log growth 

phase using the formula Td=(tf-ti)*[log(2)/log(qf/qi)] where Td is doubling time, tf and ti are 

time final and initial, and qf and qi are the OD600 values at the tf and ti.   

Plasmid Loss Rate Assay  The plasmid loss rate per cell generation was calculated 

utilizing a method similar to that described by Marahahrens et. al. (196) Briefly, 

approximately 100-200 cells were plated onto YPD and YNB-Ura plates after being 

removed from selection at time points of 0, 4, and 8 hours post inoculation.  All sets of 

plates were then incubated for 3 days and scored for colony growth.  Plasmid loss rate 

was then calculated using the formula L=Pf-Pi/T where L is the percent loss rate per cell 

generation, Pf is the percentage of growing yeast which contained the plasmid at the 

final time point, Pi is the percentage of growing yeast with the plasmid at the initial time 

point, and T is the number of cell generations.   
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RESULTS 
 

Varying Replicative Efficiencies of Different HPVs in Yeast 

 

In order to investigate the DNA replication capability of varying Papillomaviral 

species in yeast, we generated plasmid constructs by cloning a Ura3 nutritional marker 

along with the complete papillomaviral genomes into the multicloning site of Puc18 

(Figure 3.1). These were then transfected into YPH500 yeast and observed for ability to 

generate stable colonies that can be streaked onto new plates and grown in liquid 

media.  

Yeast transformed with the different HPV/Ura3 constructs demonstrated very 

different growth characteristics when plated on selective media (Figure 3.2).  Some, like 

pPA112 and pPA117, showed very little growth on the plates, with at best only one to 

two colonies growing (likely the result of recombination or integration of the Ura3 marker 

into yeast genome).  We had previously demonstrated HPV 16-Ura’s long term plasmid 

maintenance in yeast (7), and confirmed that result here. pPA116 and pPA106 

transformed yeast seemed to grow as well, or better than pPA103 on selective media.  

Significantly, BPV1-Ura (pPA118) showed no colony growth on selective media.  

Inclusion of a yeast centromere in an HPV1 plasmid construct had previously been 

shown to allow for genomic maintenance (51).  Cloning of a CEN element into pPA118 

resulted in small, slow growing yeast colonies containing the plasmid (Figure 3.2) which 

were difficult to further propagate.   

Southern blotting was performed to confirm that the HPVs which replicated 

successfully in yeast were being maintained episomally. As the HPV genomes have 

varying sequences and restriction digest profiles, DNA was run uncut after collection by 
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yeast mini-prep and will appear on the gel to possess both the low molecular weight 

supercoiled form along with a number of higher molecular weight nicked-supercoil forms. 

Expected molecular weights for the products are as follows: PA116 (HPV6b-Ura3) 

11,485 bases, PA103 (HPV16-Ura3) 11,395 , PA106 (HPV31-Ura3) 11,401 bases, 

PRS316 (ARS+CEN+ control) 4887. HPV plasmids replicated at varying copy numbers 

(Figure 3.3), with HPV6 and 31 appearing to be between 10 and 50 copies per cell while 

HPV16 was maintained at 1-5 copies per cell, as compared to input standards.  

Growth Rates and Plasmid Stability of HPV-Ura Constructs 

 

 Experiments with liquid media inoculations allowed for a closer examination of 

the growth characteristics of each HPV genome transformed yeast culture.  By 

observing changes in OD600 over several hours, a doubling time for the mid-log phase of 

each yeast culture was obtained (Figure 4).  HPV6-Ura (pPA116) had the longest 

doubling time, 7.5 hours, while pPA103 had the shortest at 3.3 hours. All three HPV 

transformed yeast strains grew more slowly than untransformed YPH500 in YPD 

complete media or PRS316 positive control transformed yeast.  

 Additionally, experiments were performed to determine and compare the rate at 

which plasmid is lost from yeast once removed from selection.  All four plasmids which 

could replicate in yeast were grown first in selective media (-Ura) to mid-log phase and 

diluted to an OD600 of 0.15 into new cultures containing nonselective media (+Ura). The 

cultures were grown, and at fixed time points, an equivalent number of cells were plated 

from each culture onto both selective and nonselective media plates, allowing for 

determination of the ratio of yeast which had maintained the plasmid vs. yeast which had 

lost it over their individual number of cell divisions.  The results are shown in Table 1.  All 
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three HPV constructs replicated with a high degree of stability similar to that of the ARS+ 

CEN+ positive control, PRS316.     

 

DISCUSSION 
 

Our results indicate that certain HPVs (6, 16 and 31) replicate stably in yeast, 

while some do not (HPV 18 and 11).  The definition of stable replication used in this 

study is based primarily on the ability to form colonies on selective media which can be 

restreaked and subcultured onto a new solid media plate as well as liquid media.  

Previous studies performed by Angeletti et. al. as well as Frazer et. al. have previously 

established that HPV 11, 18, and BPV1 are capable of replicating successfully in yeast 

during short term assays utilizing complete, non-selective liquid media (2,24,25).  

Growth on solid, selective media characteristically includes a 1-3 day growth period 

wherein yeast colonies are either not visible or very small, resembling petite mutants.  

Consequently, a replicon which does not replicate stably will not develop to the point of 

seeing visible colonies and, thus, would be scored as not replicating stably. 

The great degree of conservation between the DNA replication systems of yeast 

and higher eukaryotes suggests the possibility that certain factors may be involved in 

papillomavirus genome replication and maintenance for both systems.  As stated 

previously, papillomaviruses spend the majority of their life cycle in a maintenance 

phase, replicating episomally at low copy number, with only minimal expression of the 

virus’s replication factors E1 and E2.  We have previously demonstrated that HPV16 is 

capable of replicating with cis acting factors alone in the absence of E1 and E2 (7).  

Also, Hoffman et. al. have previously demonstrated that HPV16 replicates in a once-per-

S-phase manner in certain cell lines, depending on the presence or absence of viral 
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replication factors, while HPV31 only replicates randomly under the study conditions 

(147).   

All of these results point to a large degree of reliance upon host factors for 

regulation of viral genome replication and maintenance.  The differences in replication 

and/or maintenance success of different HPV types could represent genotype-

dependent differences in cis-acting elements in the late region of the genomes as 

compared to that of HPV16, which was recently shown to provide both functions by Kim 

et al.  Completing similar mapping experiments of other HPV types should help identify 

which cis acting factors are playing a role in yeast replicative success, but also if the 

trend for late region replication and maintenance functions observed by Kim, holds true 

for other HPVs.  In addition, the experiments described by Hoffman et al., if performed in 

yeast, should shed light on the mode of replication being utilized.  Furthermore, while all 

the HPVs in this study replicate successfully in host cells, the difference in replicative 

success shown in this study may imply a greater or lesser degree of utilization of host 

replication factors between varying HPV types and differing dependence on E1 and/or 

E2.  

Notably, there seemed to be some degree of difference when comparing the 

Southern Blot versus the liquid culture growth curves. Specifically HPV16 appeared to 

have a reduced copy number compared to the other HPV replicons but demonstrated a 

similar growth rate in transformed yeast. Presumably an increased copy number would 

lead to increased transcription of the Ura3 nutritional marker and, thus, more growth. 

The reason for this discrepancy is not currently apparent, but one potential explanation 

could be an underestimation of HPV16’s copy number by the assay. In any case, 

differences between the growth rates of the HPV replicons as compared to controls were 

not appreciably different. 
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Contrary to reports that BPV could replicate in yeast (336), we found that BPV-

Ura was unstable during long-term replication.  In short-term yeast experiments, we 

previously showed that BPV could generate Dpn I resistant DNA products, indicating 

that replication is initiated but that DNAs are most likely not stably maintained (7).  

However, the addition of a centromere region (pPA119 plasmid), resulted in only partial 

complementation of maintenance function.  This result may be related to the much 

greater number of E2 binding sites contained within the BPV genome (17 for BPV, as 

compared to 4 E2BS for HPV16) (177), implying perhaps a greater reliance on E2 

tethering.  Despite our careful analysis, BPV1 does not appear to be stably maintained in 

yeast.  It is possible that this is the result of differences between the mammalian Brd4 

protein and its yeast homologue, Bdf1, which lacks the C-terminal domain that has been 

shown to interact with E2.  Fusion proteins of Bdf1 and the C-terminus of Brd4 restores 

E2 maintenance function (41), and it is likely that a similar effect would be observed 

here.  
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FIGURE 3.1. Plasmid Maps. Into each HPV genome, a Ura3 gene cassette was 

introduced as shown in each of the plasmid maps.  The pPA103 vector contains the 

HPV16 genome with the Ura gene inserted at nt 7309 of the genome, as indicated.  

PPA106 contains the HPV31 genome, pPA112 contains the HPV18 genome, pPA116 

contains the HPV6 genome, pPA117 contains the HPV11 genome, pPA118 contains the 

BPV genome, and pPA119 contains the BPV genome with a yeast centromere inserted.   

Control plasmids included pPA104 (puc-Ura3), pGemT-Ura3 as negative controls and 

pRS316, as a positive control.     
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Figure 3.2. Yeast Transformations Two-hundred ng of each plasmid construct was 

transformed into YPH500 yeast, plated onto YNB –Ura media, and allowed to grow for 

72 hours. Plates were then scanned and scored for growth. 
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Figure 3.2 
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Figure 3.3. Southern Blot All successfully replicating constructs (HPV6 Ura, HPV16 

Ura, HPV31 Ura, and PRS316) were inoculated into 5mL of YNB-Ura media and 

incubated for 2 days. Small molecular weight DNA was then harvested via yeast 

miniprep, loaded into 1% agarose gel, and electrophoresed. DNA was then transferred 

to a nitrocellulose membrane and analyzed via Southern Blot pPA116 (HPV6 Ura), 

pPA103 (HPV16 Ura), pPA106 (HPV31 Ura), and pPRS 316 were probed utilizing P32 

radiolabelled Ura-3. . Control volumes of HPV6 Ura were utilized in the first 3 lanes to 

provide an idea of relative copy number. Plasmids are run uncut and circular and, as 

such, will show the predicted lower molecular weight supercoiled form as well as 1-3 

nicked supercoil forms which will appear to possess a greater molecular weight. 

Expected molecular weights are as follows: PA116 (HPV6b-Ura3) 11,485 bases, PA103 

(HPV16-Ura3) 11,395 , PA106 (HPV31-Ura3) 11,401 bases, PRS316 (ARS+CEN+ 

control) 4887. Arrows indicate the supercoiled form visible on the gel.  

  



www.manaraa.com

 
 

 

Figure 3.3 
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Figure 3.4A) Plasmid Construct Master Plate After initial growth upon being 

transformed into yeast, colonies were restreaked onto an additional –Ura plate both to 

provide for ease of manipulation and also to examine long term maintenance. All 

plasmids which grew initially continued to grow stably on the master plate. Additionally, 

BPV-CEN showed signs of limited growth, evident as small colonies. 3.4B) Growth 

Curve 5 mL of liquid media was inoculated to an OD600 of .15 with each of the 

successfully replicating plasmid constructs (HPV6, 16, and 31 Ura as well as p RS316.) 

Additionally, a similar OD600 was generated with YPH500 alone grown in YPD complete 

media. OD600 was recorded at time points 0, 3, 6, 8, 24, and 30 hours post inoculation. 

Growth rate was then determined by calculating doubling time during the mid log growth 

phase 
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Figure 3.4 
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Table 3.1. Plasmid Loss Rate Yeast transformed with the successfully replicating 

plasmid constructs were inoculated into YPD complete media. Approximately 100-200 

cells were the plated onto YPD and YNB-Ura plates after being removed from selection 

at time points of 0, 4, and 8 hours post inoculation.  All sets of plates were then 

incubated for 3 days and scored for colony growth.  Plasmid loss rate was then 

calculated using the formula L=Pf-Pi/T where L is the percent loss rate per cell 

generation, Pf is the percentage of growing yeast which contained the plasmid at the 

final time point, Pi is the percentage of growing yeast with the plasmid at the initial time 

point, and T is the number of cell generations.   
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Table 3.1
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Chapter 4 
 

Interaction of TRF2 with HPV16 E2 and Shelterin’s Role in HPV16 Plasmid 

Stability 
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A Role for Telomere-related Factors in HPV DNA Maintenance 
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*Author’s Note: Work for figures 2, 3, and 6 was completed by Daraporn 

Pittayakhajonwut and are included here for completeness.   



www.manaraa.com

 
 

ABSTRACT 
 

 Papillomaviruses (PV) are small non-enveloped viruses which contain a 

single molecule of circular supercoiled double stranded DNA (339). The accepted 

replication model relies on the viral proteins E1 and E2 for genomic amplification (95, 

250, 301). Previous research, however, has indicated that papillomavirus genomes can 

be replicated and maintained stably in the absence of E1 and E2 (7, 158, 336). The 

observations suggest the maintenance phase of the HPV life cycle may be adapted to 

extremely low or no E1 and E2.  

HPV genomes can persist as episomes in infected individuals for years, which 

contribute to the development of cancers.  Bovine papillomavirus (BPV) E2 tethers newly 

synthesized genomes to mitotic chromosomes to ensure faithful partitioning of genomes 

to daughter cells.  However, further study demonstrated that, while all papillomavirus E2 

proteins studied thus far utilize Brd4 for transcriptional purposes, it is dispensable for 

plasmid maintenance in HPVs (206). The mechanism of E2-dependent maintenance 

function thus remains somewhat cryptic. Although binding of E2 to Mitotic Chromosomes 

is consistently observed, the binding location is not conserved amongst HPV types 

(231). A recent study suggests that E1 is required for localization of HPV16E2 and viral 

DNA to fragile sites on Mitotic Chromosomes (255).   

HPV16 possesses an E2-independent cis-acting maintenance function mapped 

to the L2 and L1 ORFs (nt 4538-7013)(245).  Interestingly, the late region (L2, L1, and 

the LCR) of HPV16 contains four nine-base DNA sequences corresponding to binding 

sites for telomere maintenance proteins like TRF2.  Further analysis of several HPV 

genomes revealed that TRF binding sites are relatively common in HPV genomes and 

are usually found within the late region. Site-directed mutagenesis of these sites in 

HPV16 resulted in increased plasmid instability, copy number changes, and in some 
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cases complete loss of plasmid maintenance in human and yeast cell models. Further 

studies revealed that telomeric protein levels are altered in HPV16 harboring cells, and 

chromatin immunoprecipitation (ChIP) results indicating TRF2 and other telomere-

related proteins such as POT1, TIN2 and BLM helicase are able to bind these telomeric 

nonamer sequences. Additionally, it was demonstrated that HPV16 E2 protein interacts 

with the TRF2 scaffold protein, along with a number of other shelterin components.  

Furthermore, mutating these telomere binding sites to prevent protein binding induced a 

moderately destabilizing effect on papillomavirus replication in yeast. Long-term 

replication assays using a plasmid containing an OriP dyad symmetry element and a 

series of mutants lacking TRF binding sites also induced plasmid instability in 

transfected mammalian cells, albeit to a lesser extent than that observed in yeast. Since 

tight regulation of copy number is an important part of the HPV lifecycle, it can be 

concluded that TRF proteins play an important role in establishing successful DNA 

maintenance of HPV.  
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INTRODUCTION 
 

Papillomaviruses (PV) are small (55nm diameter) non-enveloped viruses of 

icosahedral capsid symmetry that encapsidate a circular supercoiled double stranded 

DNA genome (339). This family of viruses infects the stratified epithelia of the skin or 

mucosal surfaces, which include the mouth, airways, and anogenital tissues of 

vertebrate animals (75). Mucosal HPVs can be further classified into high-risk and low-

risk, with the former being the causative agents of cervical cancer as well as some 

vaginal, anal, and penile cancers (37, 57, 220), typically as a result of genomic 

integration and resultant overexpression of the viral E6 and E7 oncogenes(306). 

Mechanisms ensuring the high-fidelity replication and efficient segregation of the 

newly replicated viral DNA to the dividing cells are key features of successful 

persistence of HPV infection.  Papillomavirus replication requires recruitment of cellular 

factors, including DNA polymerase-α along with other elements of the cellular replication 

machinery (240).  The established model relies on the viral proteins E1 and E2 for 

genomic amplification (95, 250, 301). E1 unwinds the viral genome through its ATP-

dependant helicase activity. E1 is loaded onto the origin by the E2 protein, which is 

colocalized at the HPV replication foci with the L2 protein (76). Previous studies, 

however, have indicated that papillomavirus genomes can be replicated and maintained 

stably in the absence of E1 and E2 (7, 158, 336)  

An analogy for the possible strategy of stable HPV DNA maintenance comes 

from similar mechanisms observed in other DNA tumor viruses, such as Epstein-Barr 

virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV) that initiate similar 

latency stages during their life cycles (19, 21, 140, 188, 272, 324).  “Hitchhiking” by 
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tethering viral genomes to chromosomal DNA by use of a virally encoded protein as a 

tethering molecule to allow partitioning and nuclear retention of the viral genomes during 

mitosis is the common feature among these persistent viruses (38, 110).  A single viral 

protein acts as a molecular linker that establishes a bridge between the viral genome 

and host mitotic chromosomes.  The viral transactivator Epstein Barr Virus Nuclear 

Antigen 1 (EBNA1) and transcriptional repressor Latency Associated Nuclear Antigen 

(LANA-1) function as the bridge molecules for the hitchhiking strategy thought to be 

used by EBV (179) and KSHV (18, 19), respectively. 

 In the case of papillomaviruses, a similar mode of viral DNA maintenance has 

been characterized, mainly based on studies related to chromosomal segregation in 

bovine papillomavirus type 1 (BPV1).  E2 polypeptides contain three probable domains: 

a DNA binding domain (DBD) located at the C-terminus, an N-terminus transactivation 

domain, and an internal “hinge” domain. Both the C-terminal and N-terminal domains are 

well conserved within the PVs (254).  E2 protein mediates genome maintenance by 

interaction of its transactivation domain with mitotic chromosomes while the DNA binding 

domain tethers genomes through the association with multiple E2 binding sites.  Further 

studies have identified that Brd4, a cellular bromodomain protein, is a major component 

of the tethering complex that attaches the viral genomes to host mitotic chromosomes 

(25, 200, 207, 329).  Both the BPV1 E2 protein and viral genomes colocalize with Brd4 

on mitotic chromosomes in punctate spots with no specific attachment sites identified 

(274).  Disruption of the E2-Brd4 interaction dissociates E2 from chromosomes and 

abolishes viral genome maintenance (200).   

Although this interaction is the mechanism of DNA maintenance for BPV1, the 

interaction between E2 and Brd4 is required for E2-mediated transcriptional regulation 

but not for genome tethering of other PV subtypes (205, 263, 318).  Further analysis has 
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demonstrated that E2 mutants lacking Brd4 binding remained attached to mitotic 

chromosomes (230).  Therefore, different PVs might utilize different cellular proteins or 

alternate strategies to maintain the viral genome in the host cells. 

In a previous study, our laboratory has mapped maintenance elements that 

provide plasmid stability in two distinct regions in HPV16 genome (245).  These HPV16 

subgenomic fragments are located outside of the LCR that contains multiple E2 binding 

sites (E2BS) and they function as maintenance elements in the absence of any viral 

protein(245).  This finding is consistent with a separate study in yeast in which 

subgenomic fragments of HPV DNA can autonomously replicate and persist in the 

absence of E1 and E2 proteins (7, 158).  Together, these studies led to the hypothesis 

that the interaction of viral cis-elements with cellular factors may influence viral DNA 

maintenance. Sequence analysis identified several possible cellular candidates that can 

bind to the viral genome and contribute to HPV DNA maintenance.  Of those potential 

candidates, four nine-base DNA sequences of telomeric DNA (TTAGGGTTA) are found 

within the viral genome, three of which are located in the cis-element that is part of the 

previously identified maintenance element (Figure 1A).  TRF binding sites are prevalent 

among many HPV genomes, whereas there are none in BPV1 (Figure 1B).   

Plasmids which contain the Epstein Barr Virus latent origin (OriP) utilize a similar 

TRF binding site system for long-term plasmid replication and stability. The dyad 

symmetry region (DS contains 4 sites of nine-base telomeric repeat DNA in the DS 

region, similar to those found in the late region of HPV. These repeats are required for 

DNA replication (225) and plasmid maintenance (225, 325).  These telomeric repeats 

allow binding of TRF2 by DNA affinity assay (87), which is required for plasmid 

replication and maintenance (87, 323). One important function of TRF2’s role in OriP 

replication is recruiting the proteins of the Origin Recognition Complex (ORC). TRF2 
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interacts with EBNA1 (169),  a structural and functional homologue of the HPV E2 

protein, and this interaction is required for the replication and maintenance effect (85, 

87). These processes are inhibited by overexpression of a TRF2 dominant negative 

plasmid with the N and C terminal domains deleted (85).  

Kaposi’s Sarcoma Herpesvirus (KSHV) also encodes a structural and functional 

homologue of the HPV E2 and EBV EBNA1 protiens, Latency Associated Nuclear 

Antigen (LANA.) LANA is responsible for latent phase DNA replication, gene expression, 

and segregation, again similar to the E2 and EBNA1 proteins (20).  A study performed 

by the Renne laboratory demonstrated that, along with thirty other proteins, TRF2 

associates with a seventy base pair minimal replication element from the KSHV genome 

(149).  LANA co-immunoprecipitates with TRF2, but interestingly only when 

cotransfected with a plasmid containing an intact, wild type copy of the viral tandem-

repeates (TR). These observations encouraged the hypothesis that the TRF binding 

sites in cis and TRF proteins in trans contribute to episomal maintenance of HPV 

genome.   

The telomere is maintained through the action of a number of proteins combining 

together into a protein complex called shelterin. The shelterin/telosome complex 

functions primarily by bringing the three telomeric DNA binding factors (TRF1, TRF2 and 

Pot1) into the same large complex (78, 181, 237) along with Ras related protein 1 

(RAP1) (173), and TRF1-Interacting Protein (TIN2) (77). TRF1 and 2 (telomeric repeat 

factors 1 and 2) bind duplex telomeric DNA (43), almost entirely associated with cellular 

chromatin (288). TRF1 and 2 share a common architecture defined by two conserved 

regions: a TRFH domain that mediates homodimerization and a carboxy-terminal DNA 

binding domain of the SANT/Myb family (43). TRF2 promotes development of T-loop 

structures (134, 283), potentially as a result of positive supercoiling (4).  TRF2 also 
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serves to stabilize T-loops (116) through their N-terminal domain’s ability to bind ss-DNA 

in a number of secondary structures. TRF2 also interacts extensively with members of 

the cellular DNA repair system including Ataxia Telangiectasia Mutated (ATM) and the 

MRE11 recombination-repair complex(40, 80). TRF2 and POT1 proteins physically bind 

to the RecQ helicase, Werner syndrome ATP-Dependent Helicase (WRN), and then 

stimulate the helicase activity to unwind duplex telomeric substrate (127).  The precise 

roles of RecQ helicase in telomere maintenance are unclear, however, they likely to 

function in recombination and/or replication of telomeric ends. TRF2 plays a duel role in 

DNA repair, inhibiting the action of repair proteins acting on the ends of chromosomes 

while, at the same time, being phosphorylated by ATM and relocating to sites of DNA 

breaks to improve homology based recombination repair(275).  

In this work, Chromatin Immunoprecipitation (ChIP) assays were used to 

examine the interaction of TRF2 and its related proteins with the predicted TRF binding 

site in HPV16 DNA.  We also investigated the role of the suspected TRF binding sites 

and the associated proteins in viral DNA maintenance.  It appeared that telomere-related 

proteins such as TRF2, POT1, TIN2, and Bloom Syndrome Protein (BLM), a RecQ 

helicase similar to WRN, can bind to the HPV16 genome at the TRF binding site and 

these interactions contribute to the regulation of the viral genome copy number. Through 

both bacterial and mammalian expressed proteins, we demonstrated that TRF2 

interracts with HPV16 E2, and furthermore that E2 interacts with other shelterin complex 

proteins. We utilized immunofluorescence to show that E2 interacts with TRF2 in cells 

outside of E1E2 replication foci. Through site-directed mutagenesis, we demonstrated a 

copy-number effect was induced when TRF2 binding sites were removed from 

previously stable plasmids replicating in both yeast and mammalian cells. These results 

lead us to suggest that TRF2 plays an important role in HPV16 plasmid stability.  
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MATERIALS AND METHODS 
 

Plasmid Constructs   Several yeast constructs were created using similar methods. 

The negative control plasmid, pPA104 (ARS-, CEN-), was created by cloning the Ura3 

gene into the Sal I restriction site of pPuc19.  The original HPV16-Ura3 containing 

plasmid, pPA103 was described in Angeletti et al. (2002) (158).   The pPA111 plasmid 

contains an ARS+ CEN- backbone and a Trp marker which also has the L2 fragment (nt 

4538-5072) of HPV16 shown to have maintenance function (described as pPA94;mtc2 

library isolate in the original publication) (158). The pPA113 plasmid (pyac CEN- L1; nt 

6150-6950) was originally described as the pPA94:mtc3 library isolate. pPA103-2 was 

constructed by performing restriction digest with Spe1 to Brs 361 in order to remove the 

early region and most of the long control region from PA103 (nucleotides 1462-4337), 

leaving the late region to the LCR intact (4338-56). 

 The predicted TRF binding sites were designated A, B, and C by the order of 

their distributions in HPV16 genome. pPA111 (Mtc2), containing the HPV16 L2 ORF, 

had the TRF site identified as TRF A. pPA113 (Mtc3), containing the L1 ORF, contained 

the TRF B and TRF C sites. pPA103-2 was further subjected to site-directed 

mutagenesis to ablate TRF B and C binding sites.   

Plasmid 2380 contains wild-type EBV OriP cloned in pPUR and was a generous 

gift from Dr. Paul Lambert (University of Wisconsin-Madison).   Plasmid 2380.1 was 

constructed as a derivative of 2380, by inserting the AflIII fragment from pEGFP C1 that 

contains the expression cassette of enhanced green fluorescent protein (EGFP) gene 

into the EcoRI site of 2380.  The AflIII fragment insert and the EcoRI cut 2380 plasmid 

were blunt-ended by treatment with DNA polymerase I (klenow) prior to ligation.  
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Expression of EGFP is driven under the control of the cytomegalovirus (CMV) promoter.  

Plasmid 2380.2 has a 914 bp deletion between MluI and XhoI from the plasmid 2380.1, 

resulting in the removal of the family of repeat (FR).  A subgenomic fragment of the 

HPV16 late region containing 3 predicted TRF binding sites (A-C) was then inserted in 

place of the FR to generate the 2380.5 plasmid.  Those individual fragments were 

cloned into 2380.2 using multiple linkers indicated in Table 4.1 to accommodate 

incompatible ends at the insertion sites.   

To generate TRF mutants, the L1L2GFP construct containing the HPV16 late 

region that harbors three predicted TRF binding sites was modified by site-directed 

mutagenesis (Stratagene Quickchange Kit, Stratagene) with 6 bp substitutions 

converting the site(s) to the MluI restriction site.  Initially, sites A, B, and C in plasmid 

2380.5 were individually altered to make TRF mutation mutants, referred to as 

2380.5A, 2380.5B and 2380.5C.  These single-site mutants were then further 

mutated to obtain double- and triple-binding-site mutation mutants.  Constructs with two 

TRF binding sites changed to MluI were named as 2380.5AB, 2380.5AC, and 

2380.5BC, according to the sites which were modified.  The triple-binding site mutation 

mutant was denoted as 2380.5ABC.        

The E2-His construct was created by cloning the HPV16 E2 ORF into the Bam-

HindIII sites of pQE-9 6xHis tag vector and was a generous gift from the laboratory of 

Lawrence Banks (ICGEB, Trieste Italy). Expression constructs of TRF1, TRF2, Rap1, 

Tin2, and Pot1 as well as the GST expression empty vector were gifts from Dr. Paul 

Lieberman’s laboratory and were created by PCR amplification of the gene and cloning 

into pGEX-2T vector (340).  
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The E2-Flag was generated by cloning the HPV16 genome into the pCMV-Tag2 

vector between the BamH1 and EcoR1 restriction sites.  

Yeast Strains  The haploid yeast strain YPH500 (MATα ura3-52 lys2-801_amber ade2-

101_ochre trp1-Δ63) was used for all described experiments.  Yeast was grown on YNB 

minimal media omitting uracil (Ura) at 30 °C for all transformation and Southern 

experiments, while YPD complete media was utilized additionally to examine plasmid 

stability and loss rate.  The EZ Yeast Transformation kit (Zymo Research, Orange, 

Calif.) was used for transformation with the experimental plasmids according to the kit 

protocol and the Zymoprep kit (Zymo Research, Orange, Calif.) was used for yeast 

plasmid minipreps according to manufacturer specifications.  

 

Yeast Plasmid DNA Replication Assay  Two-hundred ng of each plasmid was 

transformed into YPH500 yeast, plated on Ura- selective agar, and incubated for 3 days 

at 30°C.  Plates were then scored for number of colonies formed and restreaked on 

selective solid agar, grown for an additional 3 days, and inoculated into 5mL of Ura- 

liquid media and allowed to grow for approximately 40-50 cell generations.  OD600 was 

recorded for each sample to obtain approximate number of cell equivalents per milliliter, 

and samples were diluted in order to equalize the number of cells, thus allowing an 

accurate determination of copy number by Southern Blot.  Low molecular weight DNA 

was isolated from liquid culture as described above.  The DNA was then loaded onto a 

1% agarose gel, electrophoresed, transferred to nitrocellulose, and probed with 32P-

radiolabeled pPA104.  Radiolabeling was performed using the Amersham Rediprime II 

kit (GE Healthcare UK, Buckinghamshire) in accordance with the manufacturer’s 

instructions.  
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Mammalian Cell culture and transfection methods Human embryonic kidney 293 

cells and two genetic variants stably expressing Epstein Barr nuclear antigen 1, EBNA1, 

(293E) or the large-T antigen (293T), fibroblast cell line NIH3T3, cervical cancer cell line 

HeLa, and  spontaneously transformed human keratinocyte HaCaT cells were grown in 

Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco, USA) supplemented with 10% 

heat-inactivated fetal bovine serum (FBS, Atlas, USA) and 1 mM sodium pyruvate.  

Primary cells, neonatal human foreskin keratinocyte (NHFK), human foreskin 

keratinocyte (HFK) and their derivative cells, HPV16 transformed NHFK (HPV16NHFK) 

and hTERT-immortalized HFK (hTERT-HFK) were maintained in Keratinocyte Growth 

Medium-2, KGM-2, supplemented with KGM-2 Bullet Kit (Lonza, USA) and 0.075 mM 

calcium chloride.  All cells were cultured at 37C in a fully humidified atmosphere of 

5%CO2.   

Primary keratinocytes were transfected using Primefect (Lonza, USA).  Other cell 

lines were transfected with Dreamfect Gold according to the manufacturer’s protocol.  

Briefly, cells were plated the day before transfecting at density of 4 x 105 per 60 mm dish 

or 2 x 106 per 100 mm dish.  Cells were exposed to 2 g (60 mm dish) or 5 g (100 mm 

dish) of DNA in DMEM containing a ratio of 4:1 Dreamfect (l):DNA (g) or 10:1 

Primefect (l):DNA (g).   

Nuclear extracts  Nuclear extracts were prepared at 4C by extraction of nuclei with 

high salt buffer by the following method.  Briefly, cells were lysed with NP40 lysis buffer 

(50 mM NaCl, 10 mM HEPES pH 8.0, 500 mM Sucrose, 1 mM EDTA and 0.5% NP40).  

Cell nuclei were washed afterward with low salt buffer containing 50 mM NaCl and then 

extracted with high salt buffer (350 mM NaCl, 10 mM HEPES pH 8.0, 25% glycerol, 0.1 
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mM EDTA).  All buffers were freshly added with 7 mM mercaptoethanol and 1X protease 

inhibitor cocktail III (Calbiochem) before used.   

Nuclear pellet was proceeded with further purification step by sonication in 

nuclear pallet solubilization (NPS) buffer (10 mM Tris-HCl, pH 8.0, 140 mM NaCl, 1 mM 

dithiothreitol (DTT), protease inhibitor cocktail III, 1% Triton X-100, 0.1% 

NaDeoxycholate).  Soluble nuclear pellet fraction was collected after centrifugation at 

18000 rpm for 30 min.  Typically, 1 x 107 yielded 100 μl of nuclear extract with 7 mg of 

protein per ml and 10 μl of soluble nuclear pallet fraction with 10 mg of protein per ml 

according to the Micro BCA Protein assay kit (Pierce).   

In vitro chromatin immunoprecipitation assay (ChIP) One μg of DNA was packed 

with chromatin by Chromatin Assembly Kit (Active motif) prior to subjection to chromatin 

immunoprecipiation (ChIP).  The ChIP assay was conducted in vitro as described (295) 

with the following modifications.  Briefly, 500 ng of chromatinized pEF399 or the 

L1L2Sph fragment was incubated with a mixture of 100 μl of nuclear extract and 100 μl 

of soluble nuclear pellet fraction at 30C for 30 min.  After the incubation, CaCl2 was 

added to a final concentration of 3 mM.  The sample was digested with 5 units of 

micrococcal nuclease (MNase) (USB, Affymetrix) at room temperature for 15 min before 

the reaction was terminated by adding a premixed solution containing 50 mM EDTA and 

1% Sarkosyl.  Formaldehyde was subsequently added for cross-linking and the reaction 

was allowed to proceed for another 10 min.  Then, glycine was added to a final 

concentration of 0.125 M and the mixture was left on ice for 5 min to stop the cross-

linking activity.  The reaction was diluted 1:10 with ChIP dilution buffer (16.7 mM Tris-

HCl, pH8.0, 167 mM NaCl, 1.2 mM EDTA, 1.1% Triton X-100, 0.01% SDS).  A 1/10 

volume aliquot was taken as input control and the remaining solution was precleared 

with Dynabeads protein G (Invitrogen) which was preblocked with 0.5 mg/ml sonicated 
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bacterial DNA and 1 mg/ml BSA.  After 1 h incubation at 4C, the precleared supernatant 

was then equally divided and incubated separately in the presence or in the absence of 

antibodies at 4C overnight with rotation.  Preblocked Dynabeads protein G were then 

added and the mixture was incubated at 4C for 1 h to pull down immunoprecipitate 

complexes.  The beads were washed stepwise once each with the following buffers; low 

salt immune complex wash buffer (20 mM Tris-HCl, pH 8.1, 150 mM NaCl, 2 mM EDTA, 

1% Triton X-100, 0.1% SDS); high salt immune complex wash buffer (20 mM Tris-HCl, 

pH 8.1, 500 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.1% SDS); LiCl immune complex 

wash buffer (10 mM Tris-HCl, pH 8.1, 0.25 mM LiCl, 1 mM EDTA, 1% deoxycholic acid, 

1% IGEPAL-CA630) and TE buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA).  The DNA-

protein complexes were then eluted twice with 250 μl of elution buffer (0.1 M NaHCO3, 

1% SDS).  Twenty μl of 5 M NaCl were added to input control and the eluted 

supernatant containing immunoprecipitate complexes and incubated at 65C overnight 

to reverse cross-linking.  Immunoprecipitated DNA was then purified with 

phenol:chloroform:isoamyl alcohol (25:24:1), chloroform:isoamyl alcohol (24:1) and 

precipitated with isopropanol at room temperature for 20 min.  After precipitation, DNA 

was washed once with 70% ethanol, vacuum dried and resuspended in 20 μl of water.  

The concentration of DNA was measured using nanodrop spectrometer at 260 nm.  PCR 

was performed with primers (Table 1) to individually amplify each predicted TRF binding 

site.  The PCR products were resolved on a 1.5% agarose gel and visualized after 

ethidium bromide staining.  The sizes of PCR products amplified by different pair of 

primers were indicated in Table 4.1.     

Mammalian Cell Long-term Replication Assays Approximately 4 x 105 293E cells 

were transfected with 2 μg of plamids using Dreamfect Gold reagent in medium 

containing 2% FBS.  The media was changed at 4 h posttranfection.  On the next day, 
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the transfected cells were cultured in the presence of 1 μg/ml of puromycin for 4 days to 

favor the growth of cells containing the plasmids that are resistant to puromycin and 

select out untransfected cells.  After selection, cells were grown for another 14 days.  

During the experimental period, cells were maintained and passaged in media 

containing 250 μg/ml G418 to sustain the expression of EBNA1 protein for replication of 

the plasmids harboring DS sequences.  Equal amount of DNA isolated by Hirt extraction 

at days 0 and 14 after removal of puromycin was subjected to Southern blotting using 

EGFP as a probe.  PhosphorImager analysis was used to quantify plasmid recovery.  

The quantity of plasmids was converted to copy number by computing with respect to 

copy number controls that were loaded alongside.  

Western blotting  Primary antibodies to TRF1 (GeneTex), TRF2 (GeneTex, Santa 

Cruz), POT1 (Abcam), hRap1 (Lifespan Bioscience), hTERT (Santa Cruz 

Biotechnology), Tin2 (Santa Cruz Biotechnology), TPP1 (R & D Systems), WRN (Novus 

Biologicals), BLM (Santa Cruz Biotechnology), histone H3 (Cell Signaling Technology), 

Flag (Sigma, Santa Cruz), 6xHis (Pierce), and GST (Pierce),  were purchased and used 

according to manufacturer’s protocols.  Basically, 30 μg nuclear extract were separated 

through 10% SDS-PAGE gels.  Proteins were transferred to Immobilon-P membrane 

(Millipore).  The membrane was blocked for 1 h with Tris-buffered saline/Tween (0.02 M 

Tris-HCl, pH 7.6, 0.136 M NaCl, 0.1% Tween 20) (TBS-T) containing 5% nonfat dry milk 

and incubated with primary antibody at 4C overnight.  Primary antibodies were diluted 

1:1,000 or 1:2,000 in the blocking solution (TBS-T plus 5% dry milk).  Blots were washed 

three times for 10 min each with TBS-T, incubated with appropriate secondary antibody 

conjugated with horseradish peroxidase, developed with Amersham ECL reagents and 

then exposed to X-ray films. 
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FarWestern blots DH5α bacteria were transformed with His-tagged E2 and GST-tagged 

telomere maintenance protein expression constructs and grown to an OD600 of .6-.8 in 

100mL of LB media with Ampicillin. Protein expression was induced by addition of 1mM 

IPTG for 1 hour. Cells were then spun down and collected in Sodium Chloride-Tris-

EDTA (STE)/lysozyme buffer and incubated on ice for 15 minutes prior to addition of 

protease inhibitor cocktail and N-Lauroylsarcosine and sonicated on ice until lysate 

became clear. Cell debris was spun out in a centrifuge at 4°C.  

 Protein extracts containing His-E2 were run on a 7% polyacrylamide gel and 

transferred to nitrocellulose membrane as-per standard Western Blotting procedure. 

Membranes were then probed with either a primary anti-E2 antibody or a solution 

containing a GST-tagged telomere maintenance/repair protein (TRF1, TRF2, Pot1, as 

well as GST alone and L2-GST as negative and positive controls) in 5% milk with 

proteinase inhibitors. These were incubated at 4°C overnight, washed three times in 

TBS-T, then probed with anti-GST antibody as-per standard Western Blotting protocol.  

GST-His Pulldown  Bacterial protein extracts were generated in a similar manner to Far 

Western blot. E2-His protein extracts were then exposed to Ni-NTA beads and tumbled 

at room temperature for 1 hour to bind His tagged protein. Beads were washed with PBS 

three times before being added to bacterial protein extracts containing GST-tagged 

telomere maintenance proteins. The slurries were incubated for an additional hour at 

room temperature before beads were collected by centrifugation and washed repeatedly 

with PBS until wash eluates contained the same amount of protein as background when 

read using a Nanodrop ND-1000 Spectrophotometer device. Protein was then eluted 

from the beads by boiling in 1x Laemli buffer and analyzed by western blot. Westerns 

were probed with anti-GST antibody.  
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Co-Immunoprecipitation Assay Either 293 or NIH3T3 cells were transfected with E2-

Flag or Flag empty vector. Cells were incubated for either 2 days with 293 cells or 4 

days with NIH3T3 cells prior to collection of protein lysate with lysis buffer (150mM NaCl, 

10% NP-40, 50mM Tris pH8.0). Either Santa Cruz anti-TRF2 antibody produced in goat 

or Invitrogen anti-Flag antibody produced in rabbit were coupled to Dynabeads Protien 

G. Collected protein lysates were pre-cleared with Dynabeads bound with anti-goat or 

anti-rabbit antibody and then incubated with the cells and then incubated with antibody-

bead complexes for 1 hour prior to pull-down. Proteins were directly eluted into Laemmli 

buffer and analyzed by Western Blot as previously described.  

Cellular Colocalization Assay 293 cells were plated into 6 well plates with sterile 1 dot 

cover slips placed in the bottom of the wells. 24 hours later they were transfected with 

plasmid as per previous protocol and allowed to grow for an additional 24 hours to 

ensure proper gene expression. Cover slips were then removed, washed in PBS-T, fixed 

in 4% paraformaldehyde, washed, permeabilized with .05% Triton-X 100, washed, and 

blocked with 3% BSA. Once the cells were blocked, cover slips were placed in a 

humidification chamber and incubated for 1 hour with anti-Flag antibody and anti-TRF2 

antibody in PBS-T with 1%BSA. After another wash, secondary Alexa fluorochromes for 

anti-Mouse Alexa 488 and anti-Rabbit Alexa 633 Far Red for 1 hour. Cells were finally 

washed in 1:5000 dilluted Dapi stain in PBS-T, washed again, and then mounted with 

Electron Microscopy Sciences Fluorogel with Tris Base. Slides were visualized using a 

Confocal Laser Scanning microscope with Fluoview 500 confocal system on an Olympus 

IX81 Inverted Scope. Images came from a 60x Oil Immersion lens and visualized with 

wavelengths of 405, 488, and 633 nm.  
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RESULTS 
 

Expression profile of telomeric DNA binding proteins and related proteins in various 

cells 

 hTERT is up-regulated by the E6 protein in high risk HPV infected cells (26).  

Subsequent elevated expression of hTERT in these cells imparts a tumorigenic 

phenotype, presumably through the maintenance of telomere length.  The regulation of 

telomere integrity involves proteins associated with the telomeric repeat unit 

(TTAGGGTTA) at the chromosome ends.  However, expression levels of telomere-

related proteins within the context of HPV infection have not been examined.   

Therefore, expression levels of telomere binding proteins and associated 

partners in keratinocytes that were harboring the HPV16 genome or that were 

transformed by the hTERT gene were compared to parental normal cells.  The HPV16 

harboring keratinocytes were established by transfection of primary foreskin 

keratinocytes, NHFK, with the linearized HPV16 genome.  The transfected cells that 

went through crisis (more than 30 passages) and became immortal were selected and 

referred to as HPV16 immortalized cells (HPV16-NHFK), with HPV16 presence 

confirmed by Southern Blot.  The hTERT-immortalized keratinocytes were a gift from Dr. 

Al Klingelhutz and are shown with comparison to the parental, non-immortalized HFK 

cell line.  With Western blot analysis, we found that TRF2 was up-regulated in HPV16- 

and hTERT- immortalized cells compared to their parental normal cells (Figure 4.2).  No 

notable difference in TIN2 and POT1 expression levels in transformed cells were 

observed, whereas RAP1 was down-regulated in both immortalized cells to differing 

extents and WRN was elevated in hTERT-immortalized cells.   



www.manaraa.com

 
 

Interaction of telomere-related proteins with predicted TRF binding sites in the 

HPV16 genome 

Telomere binding factors are comprised of six core proteins such as TRF1, 

TRF2, POT1, RAP1, TIN2, and TPP1 (279). If TRF binding sites found in the late region 

of HPV16 recruit shelterin and/or DNA repair factors to be utilized by the viral genome, it 

is reasonable that these proteins bind to these sites by ChIP assay. For purposes of this 

study, TRF2, Pot1, Tin2, and the telomere associated BLM helicase were examined for 

binding to these sites using the ChIP Assay. The results showed that all of the factors 

bound with varying affinity to the sequences of telomere nonamer sequences from 

HPV16 (Fig 4.3). Non-specific rabbit antibody and ribosome L30 PCR primer set was 

used for a negative control to demonstrate that no non-specific chromatin pull-down was 

occurring.    

 

Mutation of TRF Binding Sites in HPV Late Region Containing Plasmids 

Further studies were performed to investigate what role TRF binding sites from 

the late region of HPV16 played in stable plasmid replication and maintenance. As such, 

site-directed mutagenesis was used to alter the nucleotide sequence of these binding 

sites and replace them with an MluI restriction site to prevent protein binding and for 

identification of successful mutagenesis. Plasmid pPA111 (mtc 2) contains nucleotide 

4538-5072 of the L2 open reading frame, a yeast Autonomous Replicating Sequence 

(ARS) but no centromere (CEN), and the HPV16 TRF binding site labeled as site A. 

Upon introducing the mutation into pPA111 and transforming YPH500 yeast, a complete 

loss of successful long-term replication of plasmid as determined by nutritional selection 

on –Ura media was introduced (Figure 4.4A). 
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 The pPA113 (mtc3) plasmid contains nucleotides 6151-6951 of the HPV16 L1 

ORF. It contains the B and C TRF binding sites, and similarly has a yeast ARS 

sequence but no CEN. EMSA analysis was used to confirm that knockout of the TRF 

sites successfully abrogated gel shift with nuclear extract protein similar to site A (Figure 

4.4B). Unlike pPA111, however, mutation of the TRF binding sites in the pPA113 

plasmid did not result in complete loss of stable replication in yeast (Figure 4.4B). 

Southern analysis of genomes isolated from yeast identified that the pPA113 mutant 

plasmids were successfully replicating episomally with a slight shift in copy number 

(Figure 4.4B).  

Given the result from pPA111 and the stability results from pPA113, it was 

desirable to explore whether the TRF binding site maintenance effect represents a 

separate mechanism outside of or in addition to segregation. As such, the question was 

posed to examine what effect could be observed with deletion of the TRF binding sites in 

a plasmid that possesses neither ARS nor CEN sequences and is completely reliant on 

HPV16 late-region signals for plasmid stability. Towards this end, plasmid pPA103-2, a 

truncation mutant of HPV16 with the early genes removed by restriction digest with Spe1 

to Brs361 (nucleotides 1462-4337), was used to observe what effect mutation of the 

TRF binding sites would have on plasmid replication and maintenance in yeast. 

Quikchange XL site-directed mutagenesis was performed to delete B, C, and BC from 

pPA103-2 and YPH500 yeast were transfected with the resultant mutant plasmids. 

pPA103-2ΔB transformed yeast replicate robustly and with similar growth and stability 

characteristics to pPA103-2. However, removal of the C binding site resulted in a 

plasmid which could support only limited yeast growth, presumably due to an observed 

dramatic reduction in plasmid copy number as observed by Southern blot of the 
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extracted circular genomes (Figure 4.5A and 4.5B). The double mutant pPA103-2ΔBC 

was incapable of replicating stably in yeast and was thus not analyzed by Southern.  

  

Influence of TRF binding sites on HPV16 DNA maintenance in Human Cells 

Several studies in EBV have proven that nonamers which resemble TRF binding 

sequences contribute to the maintenance function of OriP containing plasmids (12, 88).  

TRF proteins and associated partners can interact with the predicted TRF binding sites 

in the HPV16 subgenomic region we had mapped for maintenance function (Figure 4.2). 

To investigate the role of TRF binding sites in the HPV16 genome maintenance in 

mammalian cells, the well-established EBV replication and maintenance system was 

used.  The minimal replicator for EBV episomal DNA maintenance has been identified in 

OriP that contains two distinct cis-elements responsible for separate processes: 

replication and partitioning.  DS (dyad symmetry) confers EBNA1-dependent replication 

whereas FR (Family of Repeats) mediates partitioning.  For HPV, it was speculated that 

the late region containing TRF binding sites is required for efficient long-term 

maintenance.  To directly test this, replication and partitioning elements were uncoupled 

by constructing hybrid origins which contain the DS element of EBV OriP and various 

TRF mutants in the background of pPur (Fig 4.6A).  Plasmid containing hybrid origins 

should replicate in an EBNA-1-dependent fashion and they have successfully been 

utilized to verify cis-elements of other DNA tumor viruses (271, 272).          

293E cells stably expressing EBNA1 were transfected with each hybrid origin 

and either 2380.1 (intact EBV OriP) or 2380.2 (EBV OriP without FR) as controls.  To 

rule out the potential effects of neighboring sequence and plasmid size on DNA retention 

and stability, a set of TRF mutants were created by either singly or multiply mutating 
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TRF binding sites in the plasmid 2380.5 (Fig 4.6A) similar to those created in yeast 

plasmids. After transfection, cells were grown in the presence of puromycin to select for 

plasmid containing cells.  After 4 days under a selective condition, outgrowing colonies 

were released from drug selection and grown in the absence of the drug for another 2 

weeks.  DNAs were Hirt extracted at the first and fourteen days after removal of the 

drug.  Hirt-extracted DNAs were then subjected to DpnI digestion and DpnI-resistant 

species were detected by Southern blot with a radiolabeled probe specific for GFP 

sequence (Fig.4.6B). All experiments were performed in triplicate.  

All TRF mutants had influence on copy number, as an increased plasmid copy 

number was observed at day 14 compared to the control which contains intact EBV OriP 

(Fig 4.6B).  However, the effect on the change in copy number by most TRF mutants 

seems marginal compared to the wild-type DNA harboring intact TRF binding sites.  The 

greatest copy number increases were observed in plasmids with the A and B sites 

mutated singly and the BC double mutant. A copy number change was observed in a 

mutant lacking TRF binding sites B and C (about 10 times higher).  In summary, these 

results indicated that mutating two out of three of the TRF binding sites reduced plasmid 

copy number.   

HPV16 E2 Interacts with TRF2 and Other Shelterin Components 

Whether or not E2 is expressed during maintenance replication, at some point 

during the HPV16 lifecycle E2 will be expressed and potentially interact with E2. OriP 

plasmids, which contain the EBV latent origin of replication, rely on an interaction 

between EBNA1, a functional homologue of HPV E2, and TRF2 for DNA replication and 

plasmid segregation. In order to investigate whether HPV16 E2 interacted with TRF2, 

Far Western blot was used. Purified E2 protein from transformed DH5α bacteria was run 

on a polyacrylamide gel and transferred to a nitrocellulose membrane prior to probing 
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with purified individual shelterin proteins (TRF1, TRF2, Pot1) fused with a GST tag. The 

resulting protein-protein complexes were probed with an anti-GST antibody. As shown in 

Figure (4.7A), E2 was specifically bound by all three shelterin complex proteins as well 

as the positive control protein L2, but not the negative control GST alone.  

To further explore this, HPV16 E2 protein fused to a 6xHistidine tag was bound 

to Ni-NTA beads and used to perform a pull-down assay to determine if shelterin 

complex proteins were capable of interacting with E2. Bacterial lysates were harvested 

containing GST-tagged shelterin component proteins, cleared with Ni-NTA beads alone, 

and then mixed with Ni-NTA beads bound with E2. After extensive washing to remove 

any non-specific binding, bound protein-protein complexes were analyzed by Western 

Blot to identify proteins capable of binding to HPV16E2. We observed that E2 was 

capable of pulling down GST-TRF1, TRF2, Rap1, Pot1, and Tin2, as well as positive 

control L2, but again was not bound by the negative control GST alone (Figure 4.7B). 

These results indicate that E2 is capable of interacted with several members of the 

shelterin complex.  

To examine if the interaction occurred in mammalian cells, we transformed both 

293 cells as well as NIH3T3 fibroblast cells with a Flag-tagged E2 vector. 3T3 cells were 

used as a means of increasing total E2 levels, as it is one of few cell lines capable of 

tolerating long-term overexpression of E2 and could thus be passaged under drug 

selection after transfection. Additional 3T3 cells were co-transfected with either a GFP 

vector to check for transfection efficiency or a TRF2 overexpression plasmid. After 2 (for 

293 cells) or 4 days (NIH3T3) of protein expression, cells were collected and total 

protein lysate was harvested. Lysates were precleared with anti-mouse and anti-goat 

antibody bound to Dynabeads protein G prior to being mixed with beads bound to either 

anti-Flag antibody to pull-down the E2 protein or anti-TRF2 to pull-down the endogenous 
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TRF2 or, in the appropriate treatments, the overexpressed TRF2 from 3T3 cells. The 

pull-down results were then analyzed by Western blot and probed with the counterpart 

antibody to determine whether TRF2 and E2 interact in vitro in mammalian cell extracts. 

As shown in Figure 8C and D, this appears to be the case, as the proteins are pulled 

down very specifically through both antibodies. The combination of all three protein-

protein interaction results allows us to conclude with certainty that E2 interacts with 

TRF2 in vitro and seems to be capable of interacting with a number of other shelterin 

components as well.  

Finally, to determine whether this interaction occurs In vivo, we performed 

immunofluorescent co-localization studies. Cells were transfected with expression vector 

for our Flag tagged E2 protein, a combination of E2 and EE tagged E1, or the Flag 

vector alone, fixed to glass coverslips with paraformaldehyde, and stained with anti-Flag 

and anti-TRF2 antibody followed by fluorescent secondary antibody (Alexa 488 and 

633.) The results are shown in Fig. 4.8E. E2 appeared to consistently co-localize with 

TRF2. Previously, the McBride laboratory had shown that HPV16 E2 co-localizes to 

chromosomes more efficiently when E1 is co-transfected into cells, and that the E1-E2 

complex induces localized DNA damage at the interaction site(255), leading to activation 

of ATM and, among numerous other factors, phosphorylation and re-localization of 

TRF2. We thus wished to observe whether including E1 with the E2 vector would alter 

localization of the E2-TRF2 complex, and so co-transfected these factors. As shown in 

Fig. 8E, the interaction with E2 and TRF2 appears to be separate from the E1-E2 

nuclear foci.  
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DISCUSSION 
 

 Through this study, TRF2 and its binding partners within the shelterin complex 

have been demonstrated to promote long-term maintenance strategy of HPV16. 

Replication of the viral genome within cells leads to an overall up-regulation of telomere 

maintenance factors in mammalian cells, and some of these factors are in turn capable 

of binding spontaneously to nine-base sequences of telomere DNA found in the late 

region of HPV16. Through the use of site-directed mutagenesis, loss of these nine-base 

repeats induces increased instability with regards to copy-number and overall replicative 

success in both mammalian cells as well as our well established S. cerevisiae based 

HPV replication model. E2 protein, which plays a critical role in plasmid maintenance for 

the virus, interacts with TRF2 as well as other members of the shelterin complex, as 

shown through both in vitro and in vivo assays. Taken together, these results indicate an 

important role for TRF2 and its subsequent binding partners in the HPV16 life cycle. 

Chromatin immunoprecipitation was used to investigate the interaction of TRF2 

and its associated proteins with TRF binding sites in HPV16 DNA and investigate 

whether TRF2 partners that are associated with TRF2 can bind to the TRF binding sites. 

TRF2 and other telomere-related proteins such as POT1, TIN2, and BLM helicase are 

able to bind to TRF binding sites.  A similar result has been observed with OriP in EBV.  

Several studies in EBV have demonstrated that TRF2 binds to the TRF binding sites at 

DS in OriP and contributes to the replication and plasmid maintenance function of OriP.  

It is likely, then, that the shelterin end-protection complex, responsible for T and D loop 

formation and protection from the NHEJ system, rather than the TRF1 dependent 

complex that binds along the length of the telomere, is responsible for any TRF2 

dependent viral-maintenance effects.  
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 Separate studies in high risk HPVs (types 31 and 16) have reported that high 

risk E6 is necessary for episomal maintenance in primary keratinocytes.  While genetic 

analyses have suggested that p53 degradation activity of E6 is necessary for stable 

maintenance of high-risk HPV genomes (241), it was not clear whether other activity of 

E6 in telomerase stimulation would provide additional stability to high-risk HPV 

genomes.  Since elevation of telomerase expression has an impact on expression 

profiles of shelterin complex proteins as well (TRF1, TRF2, POT1, TIN2, TPP1, RAP1 

and RecQ helicases), it is attractive to speculate that E6 facilitates viral DNA 

maintenance by altering expression of these key factors.  It was therefore hypothesized 

that alteration of telomeric associated protein levels would be observed in keratinocytes 

that have been immortalized by HPV16 DNA.  Various transformed/immortalized cells as 

well as normal primary keratinocytes were also included for comparison.  Compared to 

normal keratinocytes, TRF1, TRF2, and hTERT were expressed at higher levels in most 

transformed cells.  In general, the levels of these proteins were altered in transformed 

cells to varying extents.  Interestingly, we observed elevated expression of TRF2 in all 

cells that are either virally or spontaneously transformed.    

The two regions of HPV16 that contain maintenance signals in yeast (pPA111 

and pPA113) coincided with maintenance functions mapped in mammalian cells. If these 

sites play a role in stable HPV replication and maintenance in either host cell type, then 

disrupting the sequence of these sites should lead to a reduction in plasmid stability in 

both models. As such, site-directed mutagenesis was employed to disrupt TRF2 binding. 

The YPH500 strain of yeast was then transformed with the plasmids in order to test for 

loss of stability in terms of forming colonies on –Ura plates, growth rate in liquid media, 

and reduction of copy number. pPA111 lost the ability to replicate stably in yeast with the 

removal of the TRF A site. This result is different than what would be expected from a 
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deficiency in segregation, as budding yeast have a closed mitosis with a mother-cell bias 

and, as such, loss of proper plasmid segregation would result in retention of the plasmid 

in the original cell, leading to high copy number and growth of a small number of large 

colonies on the plate. This phenotype was not observed. The presence of an ARS signal 

within the plasmid rules out a defect in initiation of replication as well. Given that the 

average loss rate of plasmids with no maintenance signal in yeast is approximately 25% 

per cell generation, it is more likely that some post-replication defect has been 

introduced through loss of the A site, leading to loss of the plasmid and cessation of 

yeast growth after only a few cell generations, explaining the lack of colony formation.   

 Mutation of the B and C binding sites in pPA113 did not result in the same 

dramatic decrease in stability seen in pPA111. YPH500 transformed with the mutant 

plasmids possessed similar growth characteristics to the unmutated plasmid on solid 

media. All three mutants replicated episomally. There was an increase in the loss rate of 

plasmids with the B site removed, but not with C. As such, it is difficult to conclude what 

effect removal of these sites was having on overall plasmid stability. However, when the 

same mutations are introduced into PA103-2, a plasmid containing only the late region 

of HPV16 and no ARS or CEN sequences, the results become more pronounced. 

Mutation of only the B site did not significantly alter plasmid growth or stability, but loss 

of C resulted in a significant reduction in growth rate and copy number, and the double 

mutant was completely unstable, much like pPA111ΔA. The loss of growth from the C 

mutant resulted from a significant reduction in plasmid copy number, leading to 

insufficient production of the Ura3 gene product to sustain yeast growth. This strongly 

suggests that the successful growth of pPA113ΔC is due to the ARS+ vector backbone 

which the plasmid is cloned into and, thus, that the C site may be playing a role in 
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successful completion of plasmid replication or prevention of integration into host 

chromosomes, rather than segregation.  

To expand these results to the effect of TRF binding sites on the long-term 

maintenance of HPV DNA in mammalian cells, a heterologous replicon system that has 

been developed to study the mechanism of stable replication and plasmid maintenance 

was used (271, 272).  The hybrid origin replicon contains the EBV DS that conveys 

EBNA1 dependent replication while different viral cis elements can be replaced at the 

partitioning part of the EBV OriP.  This replicon allows for examination of the activity of 

the viral cis maintenance elements based on the capability to substitute for function of 

FR.  Using EBV-DS/HPV16-maintenance element hybrid origins that contain various 

truncated derivatives, we observed that the HPV cis maintenance element is able to 

provide DNA stability and slightly increases plasmid copy number.  

Mutation of the TRF binding sites to prevent TRF2 binding in these cells had 

some effect on plasmid maintenance, but did not necessarily coincide with the results 

observed in yeast. Notably, the PA103-2ΔBC plasmid which was unable to replicate in 

yeast induces an increase in copy number in mammalian cells. None of the mammalian 

cell plasmid mutants induced a reduction in copy number compared to the unmutated 

plasmid. While the ΔA mutation in pPA111 induced a complete loss of plasmid viability in 

yeast, it yielded only a moderate copy number increase in human cells. It is apparent, 

then, that some differences exist in the phenotypes of these mutants between the two 

systems.  

While these results do not correlate exactly between the two models, the 

significance of the results is that alteration of TRF binding sites leads to changes in 

plasmid copy number. It is likely that, during evolutionary divergence, mammalian cells 
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have developed complementary DNA maintenance systems which are masking the 

results observed in yeast. Variations in result between systems can likely be contributed 

to the presence of multiple binding sites such as MARS, HMG, TopoII, and CENP-B 

present in the maintenance element in the late region of HPV16 and, thus, a differential 

ability to bind and utilize these sites between the two model systems as well as 

differences in the telomere maintenance factor dependent phenotype between these two 

organisms. It is also possible that the inclusion of OriP and EBNA1 may have reduced 

the effect of mutating TRF2 sites in our model. The fact remains, however, that alteration 

of these sites leads to a change in plasmid copy number and, by inference, an overall 

reduction in plasmid stability.  

TRF2 is also important in the life-cycle of other DNA viruses that possess long-

term infection strategies comparable to papillomaviruses. Notably, EBV and KSHV 

proteins EBNA1 and LANA have been shown to interact with TRF2, and evidence shows 

that these interactions are important for the maintenance replication of plasmids 

containing the EBV latent origin, OriP(85, 87, 149). HPV E2 proteins, while not 

possessing sequence identity, possess similar functions to LANA and EBNA1 and 

consist of the same unique protein fold as these viral factors. This work demonstrates 

that HPV16 E2 protein interacts with TRF2 through in vitro and in vivo methods, as well 

as a number of other factors from the telomere maintenance shelterin complex. Further 

work is necessary to investigate the functional significance of this interaction, but it 

suggests that HPV16 may be capable of utilizing TRF2 similarly to EBV.  

Efficient maintenance is a result of the sum of a virus’s interactions with the 

infected cells’ replication, repair, and segregation machineries, as they have been shown 

to exhibit compensatory effects for viral genome retention (272).   Evidence in BPV 

showed that viral genomes are segregated nonrandomly into both daughter cells and the 



www.manaraa.com

 
 

average copy number of viral genomes per infected cell does not fluctuate widely (209). 

It has been described in several latent DNA viruses such as EBV and KSHV that the 

viruses adopt similar strategies to maintain their genomes in host cells. These 

observations imply that a key requirement of papillomavirus stability is regulation of copy 

number for stable, long-term DNA maintenance in infected cells.  The copy number 

fluctuations observed due to removal of TRF binding sites in this study may reflect a loss 

of that regulation.   

 The specific role TRF2 plays in the long-term persistence of HPVs is unclear. 

While it was initially hypothesized that these binding sites may be important for plasmid 

segregation, some of our results may implicate an alternate maintenance mechanism. 

Removal of the binding sites from plasmids with intact origins of replication in both 

mammalian and yeast plasmid constructs did not result in plasmid behavior consistent 

with a loss of segregation. The experiments with removal of the B and C binding sites 

from PA113 in particular do not reflect a loss of plasmid segregation. Rather, the defects 

could result in overall induction of plasmid instability and copy-number fluctuation 

through an alternate maintenance mechanism. Recent results from the Lieberman 

laboratory have indicated that, for EBV, one of TRF2’s primary functions is to recruit 

DNA repair factors responsible for resolving Holiday Junctions to both improve post-

replication processing of the viral plasmids as well as improve segregation 

efficiency(92). Given the observed fluctuations in copy number after induction of TRF 

binding site mutations, as well as the loss of replicative stability for pPA111ΔA, despite 

the presence of an ARS sequence, it is possible that similar utilization of the DNA repair 

systems may be at work here. A number of recent studies have similarly highlighted the 

importance of the DNA repair systems for papillomaviral replicative success (125, 218, 
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255), Further work will need to be completed to investigate the possible role TRF2 

proteins may play in recruiting and/or utilizing these factors.   
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Figure 4.1 Telomere Repeats Within the HPV16 Genome A) Predicted telomere-

related factor binding sites (A-D) within the HPV16 genome were discovered.  Three of 

these sites (A-C) fall within L1 and L2 regions mapped for maintenance function. The 

consensus TRF binding site is shown below the map. B) The distribution of predicted 

TRF binding sites in selected HPV genomes is shown (red boxes). Statistical analysis 

revealed that greater than 50% of the predicted binding sites were in the late region of 

HPV genomes (L1 and L2 genes; indicated by blue shading).  No identifiable TRF 

binding sites were detected in the BPV1 genome. Table 1 lists PCR primers used for 

mutation of TRF binding sites within subsequent plasmids from later in the work as well 

as the expected PCR product sizes.  
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Table 4.1 Primers used to amplify TRF binding consensus sequences. 

TRF binding site 

(nucleotides) 

Primer sequences 

 

PCR product 

sizes (bp) 

A  

(4849-4855) 

5’ACCCATCTGTATTGCAGCCTC3’  

5’AACTTGTTGTGTTGTGCGAC3’ 

192 

B 

(6198-6204) 

5’ATGCAGCAAATGCAGGTGTG3’ 

5’CACCTGGATTTACTGCAACATTGG3’ 

123 

C 

(6778-6784) 

5’AGCACAGGGCCACAATAATG3’ 

5’TCTTCTAGTGTGCCTCCTGG3’ 

283 

D 

(7863-7869) 

5’CTAAGGCCAACTAAATGTCACC3’ 

5’CGATTTCGGTTACGCCCTTAG3’ 

186 

Neg 

 

5’??3’ 

5’?3’ 

200 
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Figure 4.2 Western blot analysis for levels of telomere-related proteins in normal 

keratinocytes, those harboring HPV16, or transformed with hTert.  Whole cell 

extracts were prepared from 4 day-old cells using SDS lysis buffer.  Equal amount of 

protein extract were subjected to SDS-PAGE electrophoresis and then hybridized with 

specific antibody against protein of interest. Expression levels of telomere-related protein 

(TRF2, TIN2, POT1, RAP1, and WRN) in transformed cell compared to parental normal 

counterpart.  HPV16-NHFK (HPV16 transformed neonatal human foreskin keratinocyte 

cells), and hTERT-HFK (hTERT immortalized human foreskin keratinocyte cells). 
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Figure 4.3 Analysis of telomere-related proteins binding to the TRF binding sites 

in the viral genome by in vitro ChIP assay.  ChIP was performed in vitro using 

plasmid DNA with the HPV16 subgenomic fragment containing TRF binding sites 

incubated with 293 nuclear extract and soluble nuclear pallet.  The DNA-protein 

complexes were then crosslinked and processed as described in the materials and 

methods section.  To determine proteins bound at TRF binding sites, 

immunoprecipitations were performed using no antibody (No Ab), anti-TRF2, anti-POT1, 

anti-TIN2, or anti-BLM.  A portion of material prior to subjection to immunoprecipitation 

was saved to serve as a control for the amount of DNA added to each 

immunoprecipitate (Input).  PCRs were conducted using primers specific for the TRF 

binding site, indicated by A-D as in Fig 4.1 (primer sequences are shown in the Material 

and Methods section).   
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Figure 4.4 Mutation of TRF binding sites disrupt plasmid stability in yeast. (A). A 

mutation in TRF binding site A was analyzed for binding to telomeric proteins in yeast 

nuclear extract by gelshift (Left panel). Double stranded competitor TRF binding site was 

used at 300X molar concentration to demonstrate specificity.  The effect of TRF binding 

site A disruption on episomal maintenance of an ARS+ plasmid (pPA111) in yeast is 

shown in the (Right panel).  TRF binding site A is essential for establishment of stable 

episomes.  Viable yeast containing the remaining mutant combinations were analyzed 

by Southern analysis (B).   Mutation of TRF binding site B consistently led to about a 50 

percent increase in copy number, whereas the TRF binding site C mutation led to a 

detectable decrease in copy number.  A combination mutant in binding site B and C 

revealed an intermediate phenotype. Triplicate quantification results are shown in the 

right panel. EMSA comparing gel shift of WT vs. Mutated TRF B binding site is shown 

below. A summary of TRF binding site mutant effects on yeast growth and plasmid copy 

number is shown (C).  Each mutation is indicated by an x below the affected binding site. 

The arrows indicate the orientation of each of the TRF binding sites.  The + and – signs 

provide a qualitative summary of mutant effects.     
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Figure 4.5 Mutation of the TRF binding sites B and C influence growth phenotypes 

and plasmid copy number. A fragment of the HPV16 genome spanning nt 4334 to 56 

was shown to replicate autonomously when linked to a Ura3 selectable marker (pPA103-

2) (A). Two predicted TRF binding sites (B and C) were mutated and each of the 

resultant constructs (pPA103-2ΔB, pPA103-2ΔC, pPA103-2ΔBC), were analyzed for 

viability and growth effects in yeast when plated on media lacking uracil.   Viable 

mutants were analyzed by Southern blot (B). While pPA103-2ΔB seemed to have a 

slightly increased copy number, the ΔC mutant had a significantly reduced copy number. 

ΔBC was incapable of sustaining long-term replication in yeast. DNA is run uncut and, 

thus, bands for supercoiled will appear to have lower molecular weight while nicked 

supercoiled will appear higher. Arrow indicates the expected supercoiled molecular 

weight.  
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Figure 4.6  Map of constructs containing mutated TRF binding site(s).  The plasmid 

2380.5 carries the HPV16 sequence (nt. 4466-7154) with three TRF binding sites, dyad 

symmetry of EBV ori, and an EGFP gene.  A series of mutant constructs, derived from 

2380.5, contain single, double or triple mutations at TRF binding site as indicated in 

diagram (A). These constructs were transfected into 293E cells and selected with 

puromycin for 4 days. Each mutation is indicated by an x below the affected binding site. 

The arrows indicate the orientation of each of the TRF binding sites.  The + and – signs 

provide a qualitative summary of mutant effects on copy number. (B)  After release from 

the drug, the transfected cells were grown under non-selective condition for another 14 

days Hirt extraction was performed to collect low molecular weight DNA 14 days (day 

14) after cells were released from the drug.  Hirt-DNAs were then DpnI digested and 

subjected to Southern analysis using EGFP gene as a probe.  Experiments were 

performed in triplicate. The band intensity was determined by densitometry.  The 

plasmid stability was shown as relative change in copy number. A summary of TRF 

binding site mutant effects on copy number of 2380.5 plasmids containing the HPV16 

late region sequences  
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Fig 4.6A
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Figure 4.7 E2 interacts with TRF2 and other shelterin components. A) Purified His-

tagged E2 or negative bacterial extract was separated on an SDS PAGE gel and 

transferred to nitrocellulose.  Each blot was then probed with either GST-TRF1, GST-

TRF2, GST-Pot1 or GST-HPV16L2 as a positive control. GST alone was used as a 

negative control.  Each blot was reacted with primary monoclonal antibody to GST and 

secondary polyclonal antibody to mouse IgG, followed by development with ECL.   An 

interaction with the purified E2 protein is shown for TRF1, TRF2, Pot1 and for the 

positive control HPV16 L2.  GST alone shows no interaction with E2. B) His-tagged E2 

protein was bound to Ni-NTA beads and used for pull-down in lysate containing either 

GST tagged TRF1, TRF2, Pot1, Rap1, Tin2, HPV16 L2, or GST alone. Resulting protein 

eluates were analyzed by western blot and probed for either GST (top) or His (bottom).  
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Figure 4.8 E2 TRF2 Interaction in Mammalian Cells A) Western blot showing crude 

expression of Flag-E2 from expression vectors from 2 transfections in NIH3T3 cells. 

Reblotting of the same membrane to demonstrate TRF2 levels is shown in B) C) Co-

immunoprecipitation of E2-Flag by pull-down of TRF2. NIH3T3 cell lysate from 4 days 

post-transfection with either E2-Flag or empty vector were mixed with Dynabeads 

Protein G coupled to TRF2 antibody. Beads were collected, washed, and eluted directly 

into Laemmli buffer and analyzed by western blot. D) 293 cells were transfected with the 

same plasmid constructs as C). Lysates were collected and pull-down was performed 

with Dynabeads bound with anti-Flag antibody. Western blot shown is probed with anti-

TRF2. E) 293 cells were transfected with Flag, E2-Flag, or E2 Flag with E1 plasmids 

plasmid and fixed to glass coverslips prior to treatment with primary and fluorescent 

secondary antibodies and visualization by confocal microscopy. Flag antibody is 

visualized in red and endogenous TRF2 is shown in green. E2 co-localizes in diffuse 

nuclear structures with TRF2 associated with DNA. 
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Chapter 5 
 

General Conclusions  
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Several tumor viruses interact with elements of the DNA Repair and Telomere 

Maintenance systems [reviewed in (89, 201). The DNA repair systems are co-opted by a 

number of other DNA viruses that utilize a long-term persistence strategy for survival 

inside the nucleus. Additionally, Epstein Barr-Virus and Kaposi’s Sarcoma Herpesvirus 

utilize factors from the telomere maintenance system for their own persistence: for 

example, the TRF2 protein as a means of attracting elements of the homologous 

recombination repair system to improve segregation and recruitment of the Origin 

Recognition Complex (ORC) (85, 87). HPVs are also implicated in co-opting elements of 

the DNA repair system as a means of initiating replication. This is done through the E1 

protein triggering double-strand breaks, leading to recruit of ATM and a number of 

downstream factors which, ultimately, are required for efficient replication.  

The objective of this work was to identify cellular factors that HPVs utilize for their 

DNA replication and maintenance of the genome. During the maintenance phase, the 

virus expresses only low levels of its own replication proteins and DNA replicates once 

per cell cycle. This mechanism of viral DNA replication is in contrast to the rolling-circle 

mechanism observed during the vegetative phase, when high levels of viral DNA 

replication proteins are expressed. It is likely, then, that the virus utilizes certain cellular 

proteins that are necessary for cellular replication.  

At some point during the viral lifecycle, E2 begins to be expressed and initiates 

its functions in DNA replication and maintenance. E2 binds with high affinity to a DNA 

site with sequence matching ATTg-N4-cAAT, with a high degree of sequence variability 

in the four nucleotide internal spacer. While it was previously surmised that no specific 

sequences were required in this spacer, my results have indicated that the specificity 
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varies by papillomavirus genus. The Deltapapillomaviruses, which include the BPV1 

virus that was used for much of the early Papillomavirus E2 research, seem to be 

essentially insensitive, having a GC percentage of around 50%. Alphapapillomaviruses, 

by contrast, were observed to have a significantly lower GC content, which agrees with 

previous research demonstrating that HPV16 requires AT nucleotides in their spacer to 

maintain proper binding affinity. This is theorized to be due to BPV E2’s greater ability to 

distort the DNA helix’s shape to accommodate the E2 binding pocket compared to 

HPV16’s, a trend that appears to remain consistent throughout their respective genera. 

The other papillomavirus genera seemed to all fall into the middle of these two extremes, 

containing an average GC content of approximately 30%. Interestingly, these trends 

further correlate with adaptive radiation to infect different cell types. The majority of PV’s 

infect cutaneous keratinocytes. The Alpha genus contains members which are capable 

of infecting both cutaneous and mucosal keratinocytes, and the Delta genus contains 

members which are capable of infecting fibroblasts.  

While newly discovered papillomaviruses are classified based on sequences 

from the L1 Orf, phylogenetic analysis based on different HPV open reading frames 

allows investigators to group Papillomaviral species by varying characteristics of that 

gene. As such, we performed phylogenetic analysis of the E2 ORF of all 

papillomaviruses, demonstrating that, while all the viruses sorted into their clades based 

on their respective genera, some differences were apparent from L1 phylogenetic trees. 

The genus which showed the most evolutionary distance from the others was the 

Deltapapillomavirus genus. This correlates with previous results indicating the greater 

numbers of E2BSs in Deltapapillomaviral genomes and their greater ability to deform 

DNA structure with their E2 protein as compared to the other Papillomaviral genera 

(177). Additionally, the Alpha PVs can be divided into two sub-clades within their genus, 
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one of which contained all of the Alphapapillomaviruses which are classified as “high 

risk” for progression to cervical cancer. The second group contained the majority of the 

Alphapapillomaviruses which were still capable of infecting cutaneous keratinocytes. As 

expected, the first group also showed a much higher reliance on low GC content of their 

binding sites compared to the second. This coupled with the E2BS spacer data makes it 

tempting to associate the sites of infection with reliance of E2 on GC content of spacers, 

particularly given that the differential binding affinity of the E2 binding sites affects the 

order in which they are occupied and, thus, the levels of gene expression during the 

infection. These differences could theoretically allow for precision regulation of gene 

expression and plasmid replication.  

The yeast system allows for simplification and dissection of replication and 

maintenance functions for PVs. It has previously been demonstrated that HPVs are 

capable of replicating in yeast in the absence of any HPV specific genes. It is likely, 

then, that the host factors which play a key role in replication in mammalian cells are 

similarly involved in replication in yeast. Surprisingly, we discovered that a subset of 

HPVs are capable of replicating in this system. HPVs 16, 31, and 6 all replicate robustly, 

while 11, 18, and BPV1 do not. This failure to initiate stable replication does not match 

up with any specific phylogenetic groupings, including those performed in this report, but 

it does correlate with an observed lack of nine-base telomeric repeat sites in the late 

regions of the non-replicators. BPV1, in particular, comes from the very divergent 

Deltapapillomavirus genera and relies on Brd4 for segregation, unlike other HPVs that 

only utilize Brd4 for transcription. Working from the hypothesis that these binding sites 

were involved in yeast replication, we designed plasmid constructs whereby we could 

remove these nine-base repeats by site-directed mutagenesis. The results showed that, 

while the results for removing particular sites did not correlate with a loss of segregation 
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effect, mutation of TRF binding sites had an overall disruptive effect on plasmid stability, 

particularly when multiple mutations were introduced into the same plasmid. This 

instability was reflected by changes in DNA copy number.  

The role of TRF2 in EBV replication involves an interaction between TRF2 and 

the EBV EBNA1 protein, which is a structural and functional homologue of the HPV E2 

protein. To investigate if a similar interaction could be observed with E2, Far Western 

blots, bacterial GST-His pull-downs, and co-immunoprecipitation of mammalian proteins 

were performed. These studies demonstrated that E2 and TRF2 interact. Additionally, 

E2 interacted with other telomere maintenance and DNA repair proteins, namely TRF1, 

Pot1, Rap1, and Tin2. This agreed with results from CHIP assay demonstrating that 

similar DNA repair/telomere maintenance proteins interact with HPV16 telomere repeat 

sequences and that some of these factors are upregulated in cells after immortalization 

with HPV16 or hTert. Additionally, E2 co-localizes with TRF2 in the nucleus of cells 

independent of the E1-E2 complexes that were observed. Collectively, this evidence 

suggests that TRF2/E2 interactions are similar to EBNA1/TRF2 complex, where the 

purpose facilitates binding of repair factors to the DNA binding site in order to improve 

plasmid stability and segregation fidelity after DNA replication. Given the growing 

evidence that HPV16 DNA replication is initiated through E1 protein inducing site-

specific double strand breaks in host chromosomes and, in doing so, initiates an 

activation of the host DNA repair response, which is necessary for Papillomavirus 

replication. Thus, one of TRF2’s important functions may be to prevent integration of the 

newly replicated HPV16 DNA into the host chromosome during the repair response, a 

function that is crucial for stability of the viral chromosome. Another possibility is that the 

proteins that facilitate post-replication processing of replication products are required for 
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disentangling plasmids after once-per-cell-cycle replication and processing concatamers 

after rolling circle replication.  

 Our proposed model for HPV utilization of TRF2 is similar to that which has been 

proposed for EBV and KSHV. One of TRF2’s important functions in cells is to loop the 

end of the chromosome back into a D-loop structure which protects the telomere ends 

from attack by the Non-Homologous End Joining System. In EBV and KSHV, the 

proteins similarly bind latent viral origins and reshape the viral chromosomes into a 

higher order chromatin structure. This would increase the frequency of initiation of DNA 

replication at these sites as well as down-stream maintenance of the DNA replication 

products. The interaction between TRF2 proteins with EBNA1 or LANA is critical for this 

process, particularly in KSHV, which does not contain TRF binding sites within the 

terminal repeat. We propose that HPV16 utilizes a similar loop-remodeling activity to 

improve its own long-term plasmid stability, as evidenced by the interaction of E2 with 

shelterin proteins and the subsequent plasmid instability if TRF binding sites are 

mutated. Further work will be required to elucidate the precise mechanisms of these 

processes.  
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